Electrical & Computer Engineering Faculty Publications
Document Type
Article
Publication Date
3-29-1994
Abstract
This paper reviews a formalism that enables the dynamics of a broad class of neural networks to be understood. This formalism is then applied to a specific network and the predicted and simulated behavior of the system are compared. The purpose of this work is to utilise a model of the dynamics that also describes the phase space behavior and structural stability of the system. This is achieved by writing the general equations of the neural network dynamics as a gradient-like system. In this paper it is demonstrated that a network with additive activation dynamics and Hebbian weight update dynamics can be expressed as a gradient-like system. An example of an S-layer network with feedback between adjacent layers is presented. It is shown that the process of weight learning is stable in this network when the learned weights are symmetric. Furthermore, the weight learning process is stable when the learned weights are asymmetric, provided that the activation is computed using only the symmetric part of the weights.
Publisher
IEEE
Publication Title
Southcon/94. Conference Record
First Page
92
Last Page
96
DOI
10.1109/SOUTHC.1994.498081
Language (ISO)
English
Sponsorship
IEEE
Keywords
Application software, Computational modeling, Chaos
Recommended Citation
Abdallah, Chaouki T.; James W. Howse; and Gregory L. Heileman. "An application of gradient-like dynamics to neural networks." Southcon/94. Conference Record (1994): 92-96. doi:10.1109/SOUTHC.1994.498081.