•  
  •  
 

Abstract

Background: Studies have not clearly defined the motion of the distal radius in relation to the carpus in vivo. We hypothesized that 1) with the hand fixed by grasping a handle to prevent hand and wrist motion, the resulting load in torsion generated by extrinsic muscle in vivo would create motion at the radiocarpal joint; and 2) the motion measured will be between the distal radius and the proximal row of the carpus.

Methods: The data was acquired from the senior author external to our institution; in the current study, we quantify the resulting radiocarpal motion. A K-wire was placed into the second metacarpal, and a second wire was placed in the distal radius. The shoulder was abducted to 90° and the hand was pronated, held stationary gripping a fixed object. The forearm was pronated and supinated to simulate radiocarpal rotation. Photographs were obtained at three points: 1) initial position showing the wire in vertical alignment; 2) same perspective in maximum internal radiocarpal rotation; and 3) same perspective in maximum external radiocarpal rotation. ImageJ (open source) was used to quantify the angle between the wires.

Results: Superimposition of the three photographs in vivo allowed us to approximate two angle measurements. The measurements with maximal internal and external rotations were 16° and 24°, respectively.

Conclusions: Radiocarpal rotation should be considered in addition to flexion and extension motions and radial ulnar deviations when treating degenerative changes in the wrist.

Included in

Orthopedics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.