Program

Optical Science and Engineering

College

Interdisciplinary

Student Level

Doctoral

Start Date

7-11-2019 2:00 PM

End Date

7-11-2019 3:45 PM

Abstract

The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. The SiV stimulated emission cross section for 765-800 nm light is found to be (4.0 ± 0.3)×10^−17 cm^2, which is approximately 2-4 times larger than that of the negatively-charged diamond nitrogen vacancy center and approaches that of commonly-used organic dye molecules. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half- maximum spot size of 89 ± 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a pulse energy of 5 nJ, the resolution is expected to be ∼20 nm. We show that the present microscope can resolve SiV centers separated by �� < 150 nm that cannot be resolved by confocal microscopy.

Share

COinS
 
Nov 7th, 2:00 PM Nov 7th, 3:45 PM

Stimulated emission depletion microscopy with diamond silicon-vacancy centers

The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. The SiV stimulated emission cross section for 765-800 nm light is found to be (4.0 ± 0.3)×10^−17 cm^2, which is approximately 2-4 times larger than that of the negatively-charged diamond nitrogen vacancy center and approaches that of commonly-used organic dye molecules. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half- maximum spot size of 89 ± 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a pulse energy of 5 nJ, the resolution is expected to be ∼20 nm. We show that the present microscope can resolve SiV centers separated by �� < 150 nm that cannot be resolved by confocal microscopy.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.