Psychology ETDs

Publication Date

Fall 12-17-2016

Abstract

Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task. Pairing repeated performance of a WM task with brain stimulation may encourage plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task. In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In each experiment, participants received either active (2.0 mA) or sham (0.1 mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer (fluid intelligence) task. In Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task.

Degree Name

Psychology

Level of Degree

Doctoral

Department Name

Psychology

First Committee Member (Chair)

Clark, Vincent P.

Second Committee Member

Ruthruff, Eric

Third Committee Member

Witkiewitz, Katie

Fourth Committee Member

Thoma, Robert

Language

English

Keywords

brain stimulation, working memory, tDCS, cognitive enhancement

Document Type

Dissertation

Included in

Psychology Commons

Share

COinS