Document Type
Article
Publication Date
4-1-2023
Abstract
SIGNIFICANCE STATEMENT: Pathogenic structural genetic variants, also known as genomic disorders, have been associated with pediatric CKD. This study extends those results across the lifespan, with genomic disorders enriched in both pediatric and adult patients compared with controls. In the Chronic Renal Insufficiency Cohort study, genomic disorders were also associated with lower serum Mg, lower educational performance, and a higher risk of death. A phenome-wide association study confirmed the link between kidney disease and genomic disorders in an unbiased way. Systematic detection of genomic disorders can provide a molecular diagnosis and refine prediction of risk and prognosis.
BACKGROUND: Genomic disorders (GDs) are associated with many comorbid outcomes, including CKD. Identification of GDs has diagnostic utility.
METHODS: We examined the prevalence of GDs among participants in the Chronic Kidney Disease in Children (CKiD) cohort II ( n =248), Chronic Renal Insufficiency Cohort (CRIC) study ( n =3375), Columbia University CKD Biobank (CU-CKD; n =1986), and the Family Investigation of Nephropathy and Diabetes (FIND; n =1318) compared with 30,746 controls. We also performed a phenome-wide association analysis (PheWAS) of GDs in the electronic MEdical Records and GEnomics (eMERGE; n =11,146) cohort.
RESULTS: We found nine out of 248 (3.6%) CKiD II participants carried a GD, replicating prior findings in pediatric CKD. We also identified GDs in 72 out of 6679 (1.1%) adult patients with CKD in the CRIC, CU-CKD, and FIND cohorts, compared with 199 out of 30,746 (0.65%) GDs in controls (OR, 1.7; 95% CI, 1.3 to 2.2). Among adults with CKD, we found recurrent GDs at the 1q21.1, 16p11.2, 17q12, and 22q11.2 loci. The 17q12 GD (diagnostic of renal cyst and diabetes syndrome) was most frequent, present in 1:252 patients with CKD and diabetes. In the PheWAS, dialysis and neuropsychiatric phenotypes were the top associations with GDs. In CRIC participants, GDs were associated with lower serum magnesium, lower educational achievement, and higher mortality risk.
CONCLUSION: Undiagnosed GDs are detected both in children and adults with CKD. Identification of GDs in these patients can enable a precise genetic diagnosis, inform prognosis, and help stratify risk in clinical studies. GDs could also provide a molecular explanation for nephropathy and comorbidities, such as poorer neurocognition for a subset of patients.
Publisher
American Society of Nephrology
Publication Title
Journal of the American Society of Nephrology : JASN
ISSN
1533-3450
Volume
34
Issue
4
First Page
607
Last Page
618
DOI
10.1681/ASN.2022060725
Recommended Citation
Verbitsky M, Krishnamurthy S, Krithivasan P, Hughes D, Khan A, Marasà M, Vena N, Khosla P, Zhang J, Lim TY, Glessner JT, Weng C, Shang N, Shen Y, Hripcsak G, Hakonarson H, Ionita-Laza I, Levy B, Kenny EE, Loos RJF, Kiryluk K, Sanna-Cherchi S, Crosslin DR, Furth S, Warady BA, Igo RP Jr, Iyengar SK, Wong CS, Parsa A, Feldman HI, Gharavi AG. Genomic Disorders in CKD across the Lifespan. J Am Soc Nephrol. 2023 Apr 1;34(4):607-618. doi: 10.1681/ASN.2022060725. Epub 2022 Oct 27. PMID: 36302597.