Nuclear Engineering ETDs
Publication Date
Summer 7-1-2017
Abstract
Neutron irradiation damages material by atomic displacements. The majority of these damage regions are microscopic and difficult to study, though they can cause a change in density and thus a change in refractive index in transparent materials. This work utilized CaF2 crystals to track refractive index change based on neutron radiation dose. High precision refractive index measurements were performed utilizing a nested-cavity mode-locked laser where the CaF2 crystal acted as a Fabry-Pérot Etalon (FPE). By comparing the repetition rate of the cavity and the repetition rate of the FPE, refractive index change was determined. Following several irradiation experiments, the change in refractive index was measured to examine correlation between dose and the change in refractive index.
An examination of the causal effects behind refractive index change was also performed by molecular dynamics simulations, leading to a statistical determination of the threshold displacement energy (TDE) in a CaF2 crystal lattice. Additionally, damage cascade analysis suggests that the number of atomic displacements and vacancies caused by neutron irradiation increases linearly as a function of incident neutron energy. Simulations were performed for a Primary Knock-on Atom (PKA) energy range of 100 eV to 5 keV, which was the upper limit of the computing constraints for this work. This finding is in line with the irradiation induced refractive index change theory for crystalline solids.
Light irradiation of crystalline solids was performed demonstrating noticeable trends in the change of refractive index when correlated to absorbed dose. Unfortunately, due to uncertainties in the data caused by several unknown factors, higher dose irradiations must be performed to confirm the trend. This type of experimental measurement of microscopic damage in the bulk of the material through the refractive index will supports several potential applications. This technique may be adopted and modified for dosimetry applications as well as being utilized as a nondestructive method for understanding microscopic neutron damage in bulk materials.
Keywords
CaF2, Radiation Damage, Refractive Index, Interferometry, Fabry-Perot Etalon, LAMMPS
Document Type
Dissertation
Language
English
Degree Name
Nuclear Engineering
Level of Degree
Doctoral
Department Name
Nuclear Engineering
First Committee Member (Chair)
Adam Hecht
Second Committee Member
Gary Cooper
Third Committee Member
Cassiano de Oliveira
Fourth Committee Member
Jean-Claude Diels
Recommended Citation
Morris, Joseph P. Ph.D.. "High Precision Refractive Index Measurement Techniques Applied to the Analysis of Neutron Damage and Effects in CaF2 Crystals." (2017). https://digitalrepository.unm.edu/ne_etds/63