Branch Mathematics and Statistics Faculty and Staff Publications
Document Type
Book
Publication Date
2014
Abstract
Neutrosophic Theory means Neutrosophy applied in many fields in order to solve problems related to indeterminacy. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every entity together with its opposite or negation and with their spectrum of neutralities in between them (i.e. entities supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every entity tends to be neutralized and balanced by and entities - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Hence, in one hand, the Neutrosophic Theory is based on the triad , , and . In the other hand, Neutrosophic Theory studies the indeterminacy, labelled as I, with In = I for n ≥ 1, and mI + nI = (m+n)I, in neutrosophic structures developed in algebra, geometry, topology etc. The most developed fields of the Neutrosophic Theory are Neutrosophic Set, Neutrosophic Logic, Neutrosophic Probability, and Neutrosophic Statistics - that started in 1995, and recently Neutrosophic Precalculus and Neutrosophic Calculus, together with their applications in practice.
Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic). In neutrosophic logic a proposition has a degree of truth (T), a degree of indeterminacy (I), and a degree of falsity (F), where T, I, F are standard or non-standard subsets of ]-0, 1+[. Neutrosophic Probability is a generalization of the classical probability and imprecise probability. Neutrosophic Statistics is a generalization of the classical statistics. What distinguishes the neutrosophics from other fields is the , which means neither nor . And , which of course depends on , can be indeterminacy, neutrality, tie (game), unknown, contradiction, vagueness, ignorance, incompleteness, imprecision, etc.
Publisher
EuropaNova, Brussels, Belgium
ISSN
978-1-59973-320-3
Volume
1
Language (ISO)
English
Keywords
mathematics, physics, neutrosophic logic
Recommended Citation
F. Smarandache (ed.) Neutrosophic Theory and its Applications: Collected Papers, vol.1. Brussels: EuropaNova, 2014.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Included in
Astrophysics and Astronomy Commons, Databases and Information Systems Commons, Dynamic Systems Commons, Logic and Foundations Commons, Non-linear Dynamics Commons, Set Theory Commons