Branch Mathematics and Statistics Faculty and Staff Publications
Document Type
Article
Publication Date
9-2017
Abstract
Segmentation is considered as an important step in image processing and computer vision applications, which divides an input image into various non-overlapping homogenous regions and helps to interpret the image more conveniently. This paper presents an efficient image segmentation algorithm using neutrosophic graph cut (NGC). An image is presented in neutrosophic set, and an indeterminacy filter is constructed using the indeterminacy value of the input image, which is defined by combining the spatial information and intensity information. The indeterminacy filter reduces the indeterminacy of the spatial and intensity information. A graph is defined on the image and the weight for each pixel is represented using the value after indeterminacy filtering. The segmentation results are obtained using a maximum-flow algorithm on the graph. Numerous experiments have been taken to test its performance, and it is compared with a neutrosophic similarity clustering (NSC) segmentation algorithm and a graph-cut-based algorithm. The results indicate that the proposed NGC approach obtains better performances, both quantitatively and qualitatively.
Publisher
MDPI
Publication Title
Symmetry
Volume
9
Issue
185
First Page
1
Last Page
25
DOI
doi:10.3390/sym9090185
Language (ISO)
English
Keywords
image segmentation; neutrosophic set; graph cut; indeterminate filtering
Recommended Citation
Smarandache, Florentin; Yanhui Guo; Yaman Akbulut; Abdulkadir Sengur; and Rong Xia.
"An Efficient Image Segmentation Algorithm Using Neutrosophic Graph Cut."
Symmetry
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Included in
Graphics and Human Computer Interfaces Commons, Other Computer Sciences Commons, Other Mathematics Commons