Branch Mathematics and Statistics Faculty and Staff Publications
Document Type
Article
Publication Date
12-2017
Abstract
Hough transform (HT) is a useful tool for both pattern recognition and image processing communities. In the view of pattern recognition, it can extract unique features for description of various shapes, such as lines, circles, ellipses, and etc. In the view of image processing, a dozen of applications can be handled with HT, such as lane detection for autonomous cars, blood cell detection in microscope images, and so on. As HT is a straight forward shape detector in a given image, its shape detection ability is low in noisy images. To alleviate its weakness on noisy images and improve its shape detection performance, in this paper, we proposed neutrosophic Hough transform (NHT). As it was proved earlier, neutrosophy theory based image processing applications were successful in noisy environments. To this end, the Hough space is initially transferred into the NS domain by calculating the NS membership triples (T, I, and F). An indeterminacy filtering is constructed where the neighborhood information is used in order to remove the indeterminacy in the spatial neighborhood of neutrosophic Hough space. The potential peaks are detected based on thresholding on the neutrosophic Hough space, and these peak locations are then used to detect the lines in the image domain. Extensive experiments on noisy and noise-free images are performed in order to show the efficiency of the proposed NHT algorithm. We also compared our proposed NHT with traditional HT and fuzzy HT methods on variety of images. The obtained results showed the efficiency of the proposed NHT on noisy images.
Publisher
MDPI
Publication Title
Axioms
Volume
6
Issue
35
First Page
1
Last Page
11
DOI
doi:10.3390/axioms6040035
Language (ISO)
English
Keywords
Hough transform, fuzzy Hough transform, neutrosophy theory, line detection
Recommended Citation
Smarandache, Florentin; Umit Budak; Yanhui Guo; and Abdulkadir Sengur.
"Neutrosophic Hough Transform."
Axioms
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Included in
Applied Mathematics Commons, Logic and Foundations Commons, Number Theory Commons, Other Mathematics Commons