Branch Mathematics and Statistics Faculty and Staff Publications
Document Type
Article
Publication Date
2013
Abstract
In this paper we present a short history of logics: from particular cases of 2-symbol or numerical valued logic to the general case of n-symbol or numerical valued logic. We show generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and Lukasiewicz’ 3-symbol valued logics or Belnap’s 4-symbol valued logic to the most general n-symbol or numerical valued refined neutrosophic logic. Two classes of neutrosophic norm (n-norm) and neutrosophic conorm (n-conorm) are defined. Examples of applications of neutrosophic logic to physics are listed in the last section. Similar generalizations can be done for n-Valued Refined Neutrosophic Set, and respectively n-Valued Refined Neutrosopjhic Probability
Publication Title
Progress in Physics
Volume
4
First Page
143
Last Page
146
Language (ISO)
English
Keywords
2-valued Boolean logic, Kleene’s and Lukasiewicz’ 3-symbol valued logics, Belnap’s 4-symbol valued logic, Refined Neutrosophic Set, Refined Neutrosophic Logic, Refined Neutrosophic Probability, n-valued neutrosophic set, n-valued neutrosophic logic, n-valued neutrosophic probability
Recommended Citation
Smarandache, Florentin.
"n-Valued Refined Neutrosophic Logic and Its Applications to Physics."
Progress in Physics