Branch Mathematics and Statistics Faculty and Staff Publications
Document Type
Article
Publication Date
1999
Abstract
An efficient and accurate algorithm for solving the two-dimensional (2D) incompressible Navier-Stokes equations on a disk with no-slip boundary conditions is described. The vorticity stream function formulation of these equations is used, and spatially the vorticity and stream functions are expressed as Fourier-Chebyshev expansions. The Poisson and Helmholtz equations which arise from the implicit-explicit time marching scheme are solved as banded systems using a postconditioned spectral tau-method. The polar coordinate singularity is handled by expanding fields radially over the entire diameter using a parity modified Chebyshev series and building partial regularity into the vorticity. The no-slip boundary condition is enforced by transferring one of the two boundary conditions imposed on the stream function onto the vorticity via a solvability constraint. Significant gains in run times were realized by parallelizing the code in message passage interface (MPI).
Publisher
Society for Industrial and Applied Mathematics
Publication Title
SIAM Journal on Scientific Computing
ISSN
1064-8275
Volume
21
Issue
1
First Page
378
Last Page
403
Language (ISO)
English
Keywords
spectral methods, coordinate singularity, parallel
Recommended Citation
SIAM Journal on Scientific Computing, 21(1): 378-403
Comments
AMS subject classifcations. 76D05, 35Q30, 65M70, 65N35 PII. S1064827597330157
Article author is part of the Main Campus Math Department.