Branch Mathematics and Statistics Faculty and Staff Publications
Document Type
Book
Publication Date
2016
Abstract
Zadeh introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. Atanassov introduced the degree of nonmembership/ falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache introduced the degree of indeterminacy/ neutrality (i) as independent component in 1995 (published in 1998) and defined the neutrosophic set on three components (t, i, f) = (truth, indeterminacy, falsehood): http://fs.gallup.unm.edu/FlorentinSmarandache.htm Etymology. The words “neutrosophy” and “neutrosophic” were coined/ invented by F. Smarandache in his 1998 book. Neutrosophy: A branch of philosophy, introduced by F. Smarandache in 1980, which studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. Neutrosophy considers a proposition, theory, event, concept, or entity, "A" in relation to its opposite, "Anti-A" and that which is not A, "Non-A", and that which is neither "A" nor "Anti-A", denoted by "Neut-A". Neutrosophy is the basis of neutrosophic logic, neutrosophic probability, neutrosophic set, and neutrosophic statistics. {From: The Free Online Dictionary of Computing, edited by Denis Howe from England. Neutrosophy is an extension of the Dialectics.} Neutrosophic Logic is a general framework for unification of many existing logics, such as fuzzy logic (especially intuitionistic fuzzy logic), paraconsistent logic, intuitionistic logic, etc.
Publisher
EuropaNova, Brussels
ISSN
978-1-59973-469-9
Language (ISO)
English
Keywords
MOD graphs, neutrosophic MOD graphs
Recommended Citation
W.B. Vasantha Kandasamy, K. Ilanthenral, F. Smarandache. MOD graphs. Brussels: EuropaNova ASBL, 2016.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Included in
Algebra Commons, Algebraic Geometry Commons, Analysis Commons, Applied Mathematics Commons, Discrete Mathematics and Combinatorics Commons