Branch Mathematics and Statistics Faculty and Staff Publications
Document Type
Book
Publication Date
2014
Abstract
In this book the authors introduced the notions of soft neutrosophic algebraic structures. These soft neutrosophic algebraic structures are basically defined over the neutrosophic algebraic structures which means a parameterized collection of subsets of the neutrosophic algebraic structure. For instance, the existence of a soft neutrosophic group over a neutrosophic group or a soft neutrosophic semigroup over a neutrosophic semigroup, or a soft neutrosophic field over a neutrosophic field, or a soft neutrosophic LA-semigroup over a neutrosophic LAsemigroup, or a soft neutosophic loop over a neutrosophic loop. It is interesting to note that these notions are defined over finite and infinite neutrosophic algebraic structures. These structures are even bigger than the classical algebraic structures. This book contains five chapters. Chapter one is about the introductory concepts. In chapter two the notions of soft neutrosophic group, soft neutrosophic bigroup and soft neutrosophic N-group are introduced and many fantastic properties are given with illustrative examples
Publisher
Educational Publisher Inc., Ohio
ISSN
978-1-59973- 28 7-9
Volume
1
Language (ISO)
English
Keywords
soft neutrosophic algebraic structures, neutrosophic logic
Recommended Citation
F. Smarandache, Mumtaz Ali, Muhammad Shabir. SOFT NEUTROSOPHIC ALGEBRIAC STRUCTURES AND THEIR GENERALIZATION - Vol. 1. Ohio: Educational Publishing, 2014.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.
Included in
Algebra Commons, Discrete Mathematics and Combinatorics Commons, Logic and Foundations Commons, Number Theory Commons, Other Mathematics Commons, Set Theory Commons