Publication Date
10-21-1970
Abstract
I. The existence of eigenvalues is shown for certain classes of integral equations with continuous kernels. A number of interesting and useful results are thereby treated in a unified and relatively elementary way. The simplicity of these new proofs make the results accessible to introductory courses on the theory of integral equations.
II. Collocation with piecewise polynomial functions is developed as a method for solving two-point bour:rlary value problems. Convergence is shown for a general class of linear problems and a rather broad class of nonlinear problems. Some computational examples are presented to illustrate the wide applicability and efficiency of the procedure.
Degree Name
Mathematics
Level of Degree
Doctoral
Department Name
Mathematics & Statistics
First Committee Member (Chair)
Lawrence F. Shampine
Second Committee Member
Illegible
Third Committee Member
Bernard Epstein
Fourth Committee Member
Illegible
Language
English
Document Type
Dissertation
Recommended Citation
Russell, Robert Dodd. "I. Existence of Eigenvalues for Integral Equations; II. A Collocation Method for Boundary Value Problems." (1970). https://digitalrepository.unm.edu/math_etds/144