Publication Date
2-7-2011
Abstract
The Zernike polynomials are an infinite set of orthogonal polynomials over the unit disk, which are rotationally invariant. They are frequently utilized in optics, opthal- mology, and image recognition, among many other applications, to describe spherical aberrations and image features. Discretizing the continuous polynomials, however, introduces errors that corrupt the orthogonality. Minimizing these errors requires numerical considerations which have not been addressed. This work examines the orthonormal polynomials visually with the Gram matrix and computationally with the rank and condition number. The convergence of the Fourier-Zernike coe\ufb03cients and the Fourier-Zernike series are also examined using various measures of error. The orthogonality and convergence are studied over six grid types and resolutions, polynomial truncation order, and function smoothness. The analysis concludes with design criteria for computing an accurate analysis with the discrete Zernike polynomials.
Degree Name
Mathematics
Level of Degree
Masters
Department Name
Mathematics & Statistics
First Committee Member (Chair)
Pedro Embid
Second Committee Member
Maria Cristina Pereyra
Third Committee Member
Hugh Denham
Language
English
Keywords
Orthogonalization methods, Orthogonal polynomials--Asymptotic theory.
Document Type
Thesis
Recommended Citation
Allen, Joseph. "Orthogonality and convergence of discrete Zernike polynomials." (2011). https://digitalrepository.unm.edu/math_etds/1