Document Type

Article

Publication Date

9-1-2023

Abstract

Artificial intelligence (AI) presents an opportunity in anatomic pathology to provide quantitative objective support to a traditionally subjective discipline, thereby enhancing clinical workflows and enriching diagnostic capabilities. AI requires access to digitized pathology materials, which, at present, are most commonly generated from the glass slide using whole-slide imaging. Models are developed collaboratively or sourced externally, and best practices suggest validation with internal datasets most closely resembling the data expected in practice. Although an array of AI models that provide operational support for pathology practices or improve diagnostic quality and capabilities has been described, most of them can be categorized into one or more discrete types. However, their function in the pathology workflow can vary, as a single algorithm may be appropriate for screening and triage, diagnostic assistance, virtual second opinion, or other uses depending on how it is implemented and validated. Despite the clinical promise of AI, the barriers to adoption have been numerous, to which inclusion of new stakeholders and expansion of reimbursement opportunities may be among the most impactful solutions.

Share

COinS