Earth and Planetary Sciences ETDs
Publication Date
Summer 6-26-2018
Abstract
In the beginning of the Late Cretaceous, the Western Interior Seaway experienced the effects of a global ocean anoxic event (OAE2, or the Bonarelli Event) across the Cenomanian-Turonian (C/T) boundary (~94 Ma). This event resulted in major environmental and biological disturbances creating significant biotic turnover, with recent research suggesting near mass extinction levels in some clades. In this study we utilize a paleobiological application of a modern ecological modeling technique (PaleoENM), to test whether changes in species’ survivorship and distribution patterns across this event relate to changes in their predicted suitable habitat area and abiotic niche dimensions.
Results suggest that survivorship across the C/T is not strongly correlated with available suitable habitat. Additionally, a quarter of the taxa demonstrate significant abiotic niche stability across the C/T. These findings are consistent irrespective of higher taxonomic groups (i.e., genera), which suggests taxon-specific responses to environmental changes at the macroevolutionary scale of this study. This research supports the importance of biogeography in understanding and predicting species longevity and the maintenance of biodiversity. Application of the general principles described here to modern biological systems perturbed by human-induced anoxia may positively inform conservation efforts and predictions of modern extinction dynamics.
Degree Name
Earth and Planetary Sciences
Level of Degree
Masters
Department Name
Department of Earth and Planetary Sciences
First Committee Member (Chair)
Corinne Myers
Second Committee Member
Jason Moore
Third Committee Member
Maya Elrick
Language
English
Document Type
Thesis
Recommended Citation
Carrier, Agathe E.. "Investigation of molluscan survivorship across the Cenomanian-Turonian Boundary Event using ecological niche modeling." (2018). https://digitalrepository.unm.edu/eps_etds/233