Date

9-25-2017

Project

Energize New Mexico

Component

Solar Energy

Award Number

IIA-1301346

Document Type

Dataset

Abstract

Recent remarkable advances in material sciences and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. This review highlights the progress in how to design new types of heterostructured anode materials for enhancing LIBs in the terms of capacity, rate ability and cycling stability: (1) Carbon nanomaterials supported heterostructured anode materials; (2) Conducting polymer coated electrode materials; (3) Inorganic transition-metal compounds with core@shell structures; (4) Combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, fast electron and ion transport, were successfully explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, we will look into the challenges and perspectives of future materials design for high-performance LIBs anodes. We believe the strategies discussed in the review not only provide the promising electrode materials for energy storage, but also offer opportunities in being applied for making a variety of novel heterostructured nanomaterials for practical renewable energy applications.

Share

Article Location

 
COinS