Electrical and Computer Engineering ETDs

Publication Date



The practical use of numerical techniques in simulating casting solidification dictate that a general purpose heat transfer code be used and that results be obtained in an easy-to-analyze format. Color film plotting routines were developed for use with NASA's CINDA-3G heat transfer code; the combination of which meet the above criteria. The subroutine LQSLTR written for SINDA, the successor to CINDA-3G, was verified by comparing calculated results obtained using LQSLTR with those obtained using the specific heat method for handling the heat of fusion. Excellent agreement existed when similar data was used. When the more restrictive requirement of a 1° F melting range was used, comparable results were obtained. Uranium and lead rod castings were cast in instrumented graphite molds and the solidification sequence simulated using CINDA-3G. Discrepancies attributed to initial assumptions of instantaneous mold filling, uniform melt temperature, and intimate metal/mold contact were encountered. Further calculations using a model incorporating a gap between the mold and casting showed that the intimate contact assumption could not be used; a three-dimensional model also showed that the thermocouple assemblies used with the platinum - platinum-10% rhodium were a significant perturbation to the system. An L-shaped steel casting was simulated and the results compared to those reported in the literature. The experimental data for this casting were reproduced within the accuracy permitted by the thermal conductivity of the sand, thus demonstrating that agreement can be obtained when the mold material does not act as a chill.


The Energy Research and Development Administration

Document Type




Degree Name

Electrical Engineering

Level of Degree


Department Name

Electrical and Computer Engineering

First Committee Member (Chair)

Arthur Vincent Houghton III

Second Committee Member

Lara Henry Baker

Third Committee Member

Dale Sparks