Electrical and Computer Engineering ETDs
Publication Date
Fall 11-9-2023
Abstract
The performance of the mid-wave infrared InGaAs/InAsSb nBn photodetector is investigated and its viability for space applications is assessed. Three structures are grown with unique absorber layer doping profiles via molecular beam epitaxy. Material and device characterizations are performed and analyzed to determine the effects of doping on fundamental material parameters and detector performance. Noise-equivalent irradiance is calculated to be a factor of 4x that of an ideal detector exhibiting Rule 07 dark current and 100% quantum efficiency, demonstrating high sensitivity. The structures are then irradiated with 63 MeV protons to evaluate the extent of performance degradation over the course of mission lifetime within the space environment. The graded doping profile structure exhibits high sensitivity and resiliency to performance degradation, thereby demonstrating viability to satisfying the growing demand of a scalable mid-wave infrared sensor for space applications.
In-depth characterization analysis and development of fitting tools offer insight into the properties of the InGaAs/InAsSb superlattices and their evolution with proton fluence. This allows for a fundamental perspective into the mechanisms driving the observed trends in detector performance, providing a path forward to further technological improvement.
Keywords
Photodetector, III-V, MWIR, Diffusion, dark current, quantum efficiency
Document Type
Dissertation
Language
English
Degree Name
Electrical Engineering
Level of Degree
Doctoral
Department Name
Electrical and Computer Engineering
First Committee Member (Chair)
Ganesh Balakrishnan
Second Committee Member
Payman Zarkesh-Ha
Third Committee Member
Christos Christodoulou
Third Advisor
Christian Morath
Fourth Committee Member
Preston Webster
Fifth Committee Member
Adam Hecht
Recommended Citation
Newell, Alexander Timothy. "CHARACTERIZATION ANALYSIS AND DESIGN OF MID-WAVE INFRARED III- V-BASED TYPE-II SUPERLATTICE nBn PHOTODETECTORS FOR SPACE APPLICATIONS." (2023). https://digitalrepository.unm.edu/ece_etds/627
Included in
Electrical and Computer Engineering Commons, Semiconductor and Optical Materials Commons