Electrical and Computer Engineering ETDs

Publication Date

Summer 7-1-2019

Abstract

Wide-bandgap optoelectronic devices have undergone significant advancements with the advent of commercial light-emitting diodes and edge-emitting lasers in the violet-blue spectral region. They are now ubiquitous in several lighting, communication, data storage, display, and sensing applications. Among the III-nitride emitters, vertical-cavity surface-emitting lasers (VCSELs) have attracted significant attention in recent years due to their inherent advantages over edge-emitting lasers. The small active volume enables single-mode operation with low threshold currents and high modulation bandwidths. Their surface-normal device geometry is conducive to the cost-effective formation of high-density 2D arrays while simplifying on-chip wafer testing. Furthermore, the low beam divergence and circular beam profiles in VCSELs allow efficient fiber coupling.

Nevertheless, GaN-based VCSELs are still in the early stages of development. Several challenges need to be addressed before high-performance devices can be commercially realized. One such challenge is the lack of high-quality distributed Bragg reflector (DBR) mirrors. Conventionally, epitaxial and dielectric DBRs are used which often involve complex growth and fabrication techniques. This dissertation provides an alternative approach where subwavelength air-voids (nanopores) are introduced in alternating layers of doped/undoped GaN to form the DBR structure. Selective electrochemical etching creates nanopores in the doped layers, reducing the effective refractive index relative to the surrounding undoped GaN. Using only 16-pairs, DBR reflectance >99.9% could be achieved. Several research groups have shown optically pumped VCSELs using nanoporous DBRs on c-plane. However, there are no reports of electrically injected nanoporous VCSELs. Using m-plane GaN substrates, we have demonstrated the first ever electrically injected GaN-based VCSEL using a lattice-matched nanoporous DBR. The nonpolar m-plane orientation is beneficial for leveraging the higher per-pass gain and polarization-pinning properties absent in c-plane. Lasing under pulsed operation at room temperature was observed at 409 nm with a linewidth of ~0.6 nm and a maximum output power of ~1.5 mW. This is the highest output power from m-plane VCSELs to date with relatively stable operation at elevated temperatures. All tested devices were linearly polarization-pinned in the a-direction with high polarization ratios >0.9. Overall, the nanoporous DBRs help in mitigating some of the issues that limit the performance of III-nitride VCSELs.

Keywords

GaN, VCSEL, nonpolar, DBR, nanoporous

Document Type

Dissertation

Language

English

Degree Name

Electrical Engineering

Level of Degree

Doctoral

Department Name

Electrical and Computer Engineering

First Committee Member (Chair)

Daniel Feezell

Second Committee Member

Ganesh Balakrishnan

Third Committee Member

Sang Han

Fourth Committee Member

Ting Luk

Share

COinS