Electrical and Computer Engineering ETDs

Publication Date

Summer 7-12-2018

Abstract

This thesis presents the development of an aerial robotic testbed based on Robot Operating System (ROS). The purpose of this high-performance testbed is to develop a system capable of performing robust navigation tasks using vision tools such as a stereo camera. While ensuring the computation of robot odometery, the system is also capable of sensing the environment using the same stereo camera. Hence, all the navigation tasks are performed using a stereo camera and an inertial measurement unit (IMU) as the main sensor suite. ROS is used as a framework for software integration due to its capabilities to provide efficient communication and sensor interfaces. Moreover, it also allows us to use C++ which is efficient in performance especially on embedded platforms. Combining together ROS and C++ provides the necessary computation efficiency and tools to handle fast, real-time image processing and planning which are the vital parts of navigation and obstacle avoidance on such scale. The main application of this work revolves around proposing a real-time and efficient way to demonstrate vision-based navigation in UAVs. The proposed approach is developed for a quadrotor UAV which is capable of performing defensive maneuvers in case any obstacles are in its way, while constantly moving towards a user-defined final destination. Stereo depth computation adds a third axis to a two dimensional image coordinate frame. This can be referred to as the depth image space or depth image coordinate frame. The idea of planning in this frame of reference is utilized along with certain precomputed action primitives. The formulation of these action primitives leads to a hybrid control law for feasible trajectory generation. Further, a proof of stability of this system is also presented. The proposed approach keeps in view the fact that while performing fast maneuvers and obstacle avoidance simultaneously, many of the standard optimization approaches might not work in real-time on-board due to time and resource limitations. This leads to a need for the development of real-time techniques for vision-based autonomous navigation.

Keywords

aerial navigation, ROS, obstacle avoidance, hybrid controls

Document Type

Thesis

Language

English

Degree Name

Electrical Engineering

Level of Degree

Masters

Department Name

Electrical and Computer Engineering

First Committee Member (Chair)

Rafael Fierro

Second Committee Member

Francesco Sorrentino

Third Committee Member

Yin Yang

Share

COinS