Electrical and Computer Engineering ETDs

Publication Date

Fall 11-18-2016

Abstract

Human activity detection from digital videos presents many challenges to the computer vision and image processing communities. Recently, many methods have been developed to detect human activities with varying degree of success. Yet, the general human activity detection problem remains very challenging, especially when the methods need to work “in the wild” (e.g., without having precise control over the imaging geometry). The thesis explores phase-based solutions for (i) detecting faces, (ii) back of the heads, (iii) joint detection of faces and back of the heads, and (iv) whether the head is looking to the left or the right, using standard video cameras without any control on the imaging geometry. The proposed phase-based approach is based on the development of simple and robust methods that relie on the use of Amplitude Modulation - Frequency Modulation (AM-FM) models. The approach is validated using video frames extracted from the Advancing Outof- school Learning in Mathematics and Engineering (AOLME) project. The dataset consisted of 13,265 images from ten students looking at the camera, and 6,122 images from five students looking away from the camera. For the students facing the camera, the method was able to correctly classify 97.1% of them looking to the left and 95.9% of them looking to the right. For the students facing the back of the camera, the method was able to correctly classify 87.6% of them looking to the left and 93.3% of them looking to the right. The results indicate that AM-FM based methods hold great promise for analyzing human activity videos.

Keywords

AM-FM, face detection, pose estimation

Document Type

Thesis

Language

English

Degree Name

Electrical Engineering

Level of Degree

Masters

Department Name

Electrical and Computer Engineering

First Committee Member (Chair)

Marios S. Pattichis

Second Committee Member

Sylvia Celedon-Pattichis

Third Committee Member

Ramiro Jordan

Fourth Committee Member

Sergio Murillo

Share

COinS