Chemical and Biological Engineering ETDs
Publication Date
Fall 12-15-2019
Abstract
The physical origin of charged interfaces involving electrolyte solutions is in the thermodynamic equilibrium between the surface reactive groups and certain dissolved ionic species in the bulk. This equilibrium is very strongly dependent on the precise local density of these species, also known as potential determining ions in the solution. The latter, however, is determined by the overall solution structure, which is dominated by the large number of solvent molecules relative to all solutes. Hence, the solvent contribution to the molecular structure is a crucial factor that determines the properties of electric double layers. Models that explicitly account for the solvent structure are often referred to as "civilized" as opposed to the "primitive" ones that consider the solvent as a structureless continuum. A physically correct description of charged interfaces that involve electrolyte solutions (electric double layers), needs to account for the full solution structure in conjunction with the precise surface chemistry governed by the thermodynamic equilibrium.
Apart from charge regulation, these systems involve a wide variety of interactions between the different components of the electrolyte solutions and with the charged interface. While the role of all Coulombic type of interactions is clear, that of the non-Coulombic forces is less obvious. Such as the effects of bulk solvation interactions and solvophobic or solvophillic interactions on the properties of the electric double layer.
This doctoral dissertation presents a comprehensive study of the effects of the non-electrostatic interactions on the electric double layer such as ionic solvation, solvent-solvent interactions and interactions of solution components with the charged surface in Electric double layer. The analysis of electrostatic properties like surface charge and potential, and the distribution of ionic species and total electrostatic charge distribution were presented. The analysis uses classical Density Functional Theory which treats the solvent explicitly and ionic species with finite sizes coupled with surface charge regulation.
Keywords
Electric Double Layers, Colloids, Interfaces, DLVO, forces, classical DFT, Density functional theory
Document Type
Dissertation
Language
English
Degree Name
Chemical Engineering
Level of Degree
Doctoral
Department Name
Chemical and Biological Engineering
First Committee Member (Chair)
DIMITER N PETSEV
Second Committee Member
FRANK VAN SWOL
Third Committee Member
FERNANDO GARZON
Fourth Committee Member
JOSE M CERRATO
Fifth Committee Member
BOIAN S ALEXANDROV
Recommended Citation
Vangara, Raviteja. "Coulombic and non-Coulombic effects of single and overlapping Electric Double Layers with Surface Charge Regulation." (2019). https://digitalrepository.unm.edu/cbe_etds/83
Included in
Complex Fluids Commons, Statistical, Nonlinear, and Soft Matter Physics Commons, Thermodynamics Commons