Biology ETDs

Publication Date

Fall 11-15-2023

Abstract

Phenology, the timing of recurrent biological events, is a key mechanism by which species adapt or acclimatize to variable environmental conditions, including those influenced by climate change. Measurable traits, including the onset and end of activity, peak activity, and duration, characterize the phenology of life events, and could be significant predictors of trends in population abundance or stability in a changing climate. Bees provide critical pollination services, and understanding the covariates of bee phenological traits can refine predictions on the vulnerabilities of bees and their services to climate change. We paired 16 years of monthly bee survey data (2002-2019) with climate data for 74 bee species in dryland ecosystems of central New Mexico, USA. Contrary to the current paradigm of temperature as the key driver of insect phenology, twice as many bee species had phenological sensitivity to precipitation (39%) than to temperature (20%). Among phenological traits, the end date of active flying periods was most sensitive to climate. Of the 20% of bee species for which precipitation predicted activity end date, 73% ended activity later in wetter years. Fifteen bee species (~20%) had phenological traits sensitive to temperature, but temperature sensitivity was idiosyncratic, and only four species had earlier onset in warmer years, as expected from results in other biomes. Oligolectic (diet specialist) bee species began, peaked, and ended activity later in the year than polylectic (generalist) species, but phenological traits did not correlate with sociality. All phenological traits showed phylogenetic signal, suggesting evolutionary conservatism of phenology among the common bees of central New Mexico drylands. Finally, species with long activity durations were more common, had greater temporal stability in abundance from year to year, and were less likely to decline over time, perhaps because of their longer window for resource acquisition. Our results suggest that drier climates of the future may shift bee phenological activities toward earlier onset, peak, and end dates, that bees with short activity durations may be among the most sensitive to declines in future climates, and that both generalist and social bees may be able to resist or recover from climate change if they have long durations of flight activity.

Project Sponsors

NSF, UNM, SEV LTER

Language

English

Keywords

Apidae, dryland, long-term ecological research, phenology, pollination, semi-arid ecosystem, stability, abundance, bees

Document Type

Thesis

Degree Name

Biology

Level of Degree

Masters

Department Name

UNM Biology Department

First Committee Member (Chair)

Jennifer Rudgers

Second Committee Member

David Lightfoot

Third Committee Member

Kenneth Whitney

Fourth Committee Member

Melanie Kazenel

Included in

Biology Commons

Share

COinS