Neutrosophic Sets and Systems
Abstract
Plant diseases are one of the factors that lead to yield and economic losses, which have a direct effect on national and international food production systems. One of the most essential ways to avoid agricultural product loss or reduction in amount is to diagnose plant diseases promptly and accurately. Hence, the diagnosis process for plants is crucial and should be conducted accurately. Moreover, this study focuses on this process by constructing an Artificiality Diagnostics Framework (ADF) to serve the study’s objectives which entailed conducting diagnosis for plants in a professional and precise manner over uncertain environments. Thus, neutrosophic theory is considered the principal ingredient in our ADF. Due to the ability of neutrosophic to divide images into Truth (T(, Falsity(F), and Indeterminacy (I). Also, deep learning (DL) is considered another principal ingredient in treating vast samples of datasets. Our comparative analysis of the leaves of potatoes is conducted whether leveraging neutrosophic and without utilizing Neutrosophic. ResNet50, ResNet152, and Mobile Net are the principal ingredients for the training dataset. The findings of implementing these networks indicated that ResNet50 achieved the highest accuracy of 0.915 in the T domain, ResNet152 achieved the highest accuracy of 0.905 in the True(T) domain, and Mobile Net achieved the highest accuracy of 0.915 in Truth(T) domain. Accuracy of 0.863 in Indeterminate(I).
Recommended Citation
El-Massry, Ahmed; Florentin Smarandache; and Mona Mohamed. "Empowering Artificial Intelligence Techniques with Soft Computing of Neutrosophic Theory in Mystery Circumstances for Plant Diseases." Neutrosophic Sets and Systems 66, 1 (2024). https://digitalrepository.unm.edu/nss_journal/vol66/iss1/6