Electrical and Computer Engineering ETDs

Publication Date



Any signal a satellite receives from Earth has traveled through the ionosphere. Transmission through the ionosphere results in a frequency dependent time-delay of the signal frequency components. This effect of the medium on the signal is termed dispersion, and it increases the difficulty of pulse detection. A system capable of compensating for the dispersion would be desirable, as pulsed signals would be more readily detected after compression. In this thesis, we investigate the derivation of a digital filter to compensate for the dispersion caused by the ionosphere. A transfer function model for the analysis of the ionosphere as a system is introduced. Based on the signal model, a matched filter response is derived. The problem is formulated as a group delay compensation effort. The Abel-Smith algorithm is employed for the synthesis of a cascaded allpass filter bank with desired group delay characteristics. Extending this work, an optimized allpass filter is then derived using a pole location approach. A mean-square error metric shows that the optimized filter can reproduce, and even improve upon, the results of the Abel-Smith design with a significantly lower order filter. When compared against digital filters produced with the least p-th minimax algorithm, we find that the new method exhibits significantly lower error in the band of interest, as well as lower mean squared error overall. The result is a simple optimized equalization filter that is stable, robust against cascading difficulties, and applicable to arbitrary waveforms. This filter is the cornerstone to a new all-digital electromagnetic pulse detection system.


Signal processing

Document Type




Degree Name

Electrical Engineering

Level of Degree


Department Name

Electrical and Computer Engineering

First Committee Member (Chair)

Doerry, Armin

Second Committee Member

Christodoulou, Christos