Computer Science ETDs

Publication Date

Fall 12-14-2019


Most traditional network measurement scans and attacks are carried out through the use of direct, on-path network packet transmission. This requires that a machine be on-path (i.e, involved in the packet transmission process) and as a result have direct access to the data packets being transmitted. This limits network scans and attacks to situations where access can be gained to an on-path machine. If, for example, a researcher wanted to measure the round trip time between two machines they did not have access to, traditional scans would be of little help as they require access to an on-path machine to function. Instead the researcher would need to use an off-path measurement scan.

Prior work using network side-channels to perform off-path measurements or attacks relied on techniques that either exhausted the shared, finite resource being used as a side-channel or only measured basic features such as connectivity. The work presented in this dissertation takes a different approach to using network side-channels. I describe research that carries out network side-channel measurements that are more complex than connectivity, such as packet round-trip-time or detecting active TCP connections, and do not require a shared, finite resource be fully exhausted to cause information to leak via a side-channel. My work is able to accomplish this by understanding the ways in which internal network stack state changes cause observable behavior changes from the machine. The goal of this dissertation is to show that: Information side-channels can be modulated to take advantage of dependent, network state behavior to enable non-trivial, off-path measurements without fully exhausting the shared, finite resources they use.

Document Type


Degree Name

Computer Science

Level of Degree


Department Name

Department of Computer Science

First Committee Member (Chair)

Jedidiah R. Crandall

Second Committee Member

Soraya Abad-Mota

Third Committee Member

Jedidiah McClurg

Fourth Committee Member

Phillipa Gill