Nuclear Engineering ETDs
Publication Date
9-9-2010
Abstract
A new approach to the kinetic simulation of plasmas in complex geometries, based on the Particle-in-Cell (PIC) simulation method, is explored. In this method, called the Arbitrary Curvilinear Coordinate PIC (ACC-PIC) method, all essential PIC operations are carried out on a uniform, unitary square logical domain and mapped to a nonuniform, boundary fitted physical domain. We utilize an elliptic grid generation technique known as Winslow's method to generate boundary-fitted physical domains. We have derived the logical grid macroparticle equations of motion based on a canonical transformation of Hamilton's equations from the physical domain to the logical. These equations of motion are not seperable, and therefore unable to be integrated using the standard Leapfrog method. We have developed an extension of the semi-implicit Modified Leapfrog (ML) integration technique to preserve the symplectic nature of the logical grid particle mover. We constructed a proof to show that the ML integrator is symplectic for systems of arbitrary dimension. We have constructed a generalized, curvilinear coordinate formulation of Poisson's equations to solve for the electrostatic fields on the uniform logical grid. By our formulation, we supply the plasma charge density on the logical grid as a source term. By the formulations of the logical grid particle mover and the field equations, the plasma particles are weighted to the uniform logical grid and the self-consistent mean fields obtained from the solution of the Poisson equation are interpolated to the particle position on the logical grid. This process coordinates the complexity associated with the weighting and interpolation processes on the nonuniform physical grid. In this work, we explore the feasibility of the ACC-PIC method as a first step towards building a production level, time-adaptive-grid, 3D electromagnetic ACC-PIC code. We begin by combining the individual components to construct a 1D, electrostatic ACC-PIC code on a stationary nonuniform grid. Several standard physics tests were used to validate the accuracy of our method in comparison with a standard uniform grid PIC code. We then extend the code to two spatial dimensions and repeat the physics tests on a rectangular domain with both orthogonal and nonorthogonal meshing in comparison with a standard 2D uniform grid PIC code. As a proof of principle, we then show the time evolution of an electrostatic plasma oscillation on an annular domain obtained using Winslow's method.
Sponsors
Los Alamos National Laboratory
Document Type
Dissertation
Language
English
Degree Name
Nuclear Engineering
Level of Degree
Doctoral
Department Name
Nuclear Engineering
First Committee Member (Chair)
Finn, John
Second Committee Member
Cartwright, Keith
Third Committee Member
Gilmore, Mark
Fourth Committee Member
Roderick, Norm
Recommended Citation
Fichtl, Christopher. "An arbitrary curvilinear coordinate particle in cell method." (2010). https://digitalrepository.unm.edu/ne_etds/14