Mechanical Engineering ETDs
Publication Date
2-1-2016
Abstract
This thesis presents an experimental study of instabilities developing from oblique shock wave interaction with a heavy gas column. For these experiments, the gas column consists of pure sulfur hexafluoride infused with ~11% acetone gas by mass. A misalignment of the pressure and density gradients (from the shock wave) results in three-dimensional vorticity deposition on the gaseous interface. This is the main mechanism responsible for the formation of traditional Richtmyer-Meshkov instabilities (RMI). Other instabilities develop along the interface due to shear between the injected material and the post-shock air (moving at piston velocity behind the column). These instabilities present on the leading (with respect to the shock) and trailing edges of the column. On the leading edge, small perturbations are amplified by shear at the interface. This leads to the development of full billows, or ``cat's eye'' vortices, physically indistinguishable from Kelvin-Helmholtz instabilities (KHI). Certain characteristics of the KHI, such as initial instability growth rate and wavelength (lambda), depend on several factors including the Mach number of the shock wave, the shock tube angle of inclination (theta), and the post-shock compressed size of the column.
Keywords
shock, wave, Kelvin-Helmholtz, instability, Planar Laser Induced Fluorescence, oblique
Degree Name
Mechanical Engineering
Level of Degree
Masters
Department Name
Mechanical Engineering
First Committee Member (Chair)
Truman, C. Randall
Sponsors
National Nuclear Security Administration
Document Type
Thesis
Language
English
Recommended Citation
Wayne, Patrick. "Analysis of Kelvin-Helmholtz Instabilities Developing from Oblique Shock Interaction with a Heavy Gas Column." (2016). https://digitalrepository.unm.edu/me_etds/41