•  
  •  
 

Neutrosophic Sets and Systems

Abstract

This study proposes a hybrid approach to predict students’ final academic performance in a mathematics course by integrating Random Forest, a supervised machine learning model, with neutrosophic logic to assess prediction reliability. The objective is to improve educational forecasting by not only predicting grades but also quantifying the confidence of each prediction through neutrosophic components—truth (T), indeterminacy (I), and falsity (F). The model was trained on a dataset of demographic, academic, and social attributes from Portuguese schools, achieving robust performance (MAE = 1.54, R2 = 0.61). Key contributions include: (1) a framework for transparent AI-assisted decision-making in education, (2) actionable insights for identifying at-risk students, and (3) a novel application of neutrosophic logic to interpret prediction uncertainties. The results demonstrate the potential of combining machine learning with neutrosophic analysis to improve academic interventions.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.