Branch Mathematics and Statistics Faculty and Staff Publications

Document Type


Publication Date



: In this paper we prove that Neutrosophic Statistics is an extension of the Interval Statistics, since it may deal with all types of indeterminacies (with respect to the data, inferential procedures, probability distributions, graphical representations, etc.), it allows the reduction of indeterminacy, and it uses the neutrosophic probability that is more general than imprecise and classical probabilities, and has more detailed corresponding probability density functions. While Interval Statistics only deals with indeterminacy that can be represented by intervals. And we respond to the arguments by Woodall et al. [1]. We show that not all indeterminacies (uncertainties) may be represented by intervals. Also, in some applications, we should better use hesitant sets (that have less indeterminacy) instead of intervals. We redirect the authors to the Plithogenic Probability and Plithogenic Statistics that are the most general forms of MultiVariate Probability and MultiVariate Statistics respectively (including, of course, the Imprecise Probability and Interval Statistics as subclasses).

Publication Title

International Journal of Neutrosophic Science

Language (ISO)



neutrosophic statistics, interval statitistics, classical statistics

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.