Branch Mathematics and Statistics Faculty and Staff Publications

Document Type


Publication Date



In this book we introduce several algebraic structures on the special fuzzy interval [0, 1). This study is different from that of the algebraic structures using the interval [0, n) n ≠ 1, as these structures on [0, 1) has no idempotents or zero divisors under ×. Further [0, 1) under product × is only a semigroup. However by defining min(or max) operation in [0, 1); [0, 1) is made into a semigroup. The semigroup under × has no finite subsemigroups but under min or max we have subsemigroups of order one, two and so on. [0, 1) under + modulo 1 is a group and [0, 1) has finite subgroups. We study [0, 1) with two binary operations min and max resulting in semiring of infinite order. This has no subsemirings which is both an ideal and a filter. However pseudo semiring under min and × has subsemirings which is both a filter and an ideal.


Educational Publisher Inc., Ohio



Language (ISO)



algebraic structures, fuzzy interval [0, 1), neutrosophic logic, semiring

Creative Commons License

Creative Commons Attribution-Share Alike 4.0 International License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.