3-1-2005

Justification for Class III Permit Modification March 2005 DSS Site 1010 Operable Unit 1295 Building 6536 Septic System and Seepage Pit at Technical Area III

Sandia National Laboratories/NM

Follow this and additional works at: https://digitalrepository.unm.edu/snl_complete

Recommended Citation

This Technical Report is brought to you for free and open access by the Sandia National Labs/NM Technical Reports at UNM Digital Repository. It has been accepted for inclusion in Regulatorily Completed by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.
Site Histories

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Name</th>
<th>Location</th>
<th>Groundwater Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020</td>
<td>Bldg 6730 Septic System</td>
<td>Ta-III</td>
<td>42</td>
</tr>
<tr>
<td>1024</td>
<td>Bldg 6734 Septic System</td>
<td>Ta-III</td>
<td>52</td>
</tr>
<tr>
<td>1028</td>
<td>Bldg 6740 Septic System and Seepage Pit</td>
<td>Ta-III</td>
<td>40</td>
</tr>
<tr>
<td>1029</td>
<td>Bldg 6745 Septic System</td>
<td>Ta-III</td>
<td>40</td>
</tr>
<tr>
<td>1083</td>
<td>Bldg 6750 Septic System</td>
<td>Ta-III</td>
<td>60</td>
</tr>
<tr>
<td>1108</td>
<td>Bldg 6755 Septic System</td>
<td>Ta-III</td>
<td>60</td>
</tr>
<tr>
<td>1110</td>
<td>Bldg 6756 Septic System</td>
<td>Ta-III</td>
<td>60</td>
</tr>
</tbody>
</table>

Constituents of Concern

- VOCs, SVOCs, PCBs, HE compounds, metals, cyanide, and radionuclides.

Investigations

- A backhoe was used to positively locate buried components (drainfield drain lines, drywells) for placement of soil-vapor samplers and soil borings.
- Passive soil-vapor samples were collected in drainfield and seepage pit areas to screen for VOCs.
- Soil samples were collected from the surface and below drainfield drain lines, seepage pits, and drywells to determine if VOCs were released to the environment from drain systems.

Summary of Data Used for NFA Justification

- Seven of the twelve DSS sites were selected by NMED for passive soil-vapor sampling to screen for VOCs, and no significant VOC contamination was identified at any of the seven sites.
- Soil samples were analyzed at on- and off-site laboratories for VOCs, SVOCs, PCBs, HE compounds, metals, cyanide, and alpha beta activity.
- Radionuclides were not detected at any of these sites.
- Arsenic was detected above background at six of the sites, and barium was detected above background at one site.
- No other metals were detected above background concentrations.
- Either U-234 or U-236 was detected at an activity slightly above the background activity at three of the twelve sites and, although not detected, the MDA for one or both of these two radionuclides exceeded background levels at five sites.
- Gross alpha activity was slightly above background in one sample from one of the twelve sites, and gross beta activity was below background in all samples from the twelve sites.
- All confirmatory soil sample analytical results were used for characterizing the sites, for performing the risk screening assessments, and as justification for the NFA proposals for these sites.

Recommended Future Land Use

- Industrial land use was established for these twelve DSS AOC sites.

Results of Risk Analysis

- Risk assessment results for the residential scenario are calculated per NMED risk assessment guidance as presented in "Supplemental Risk Document Supporting Class 3 Permit Modification Process" (SNL, October 2003).
- Because VOCs were present in concentrations greater than background-screening levels or because constituents were present that did not have background screening numbers, it was necessary to perform risk assessments for these twelve DSS sites. The risk assessment evaluated the potential for adverse health effects for the residential land-use scenario.
- As shown in the table below, the total HIs and estimated excess cancer risks for six of the twelve DSS sites are below NMED guidelines for the residential land-use scenario.
- For five additional sites, the HIs are below the residential guideline, but the total estimated excess cancer risks are slightly above the residential guideline. However, the incremental excess cancer risk values for these five sites are below the NMED residential guidelines.
- For one of the twelve sites (DSS Site 1020), the total HI and estimated excess cancer risk are slightly above the NMED guidelines for the residential land-use scenario due to an isolated detection of asphalt-like SVOCs in a single sample. With the removal of these SVOCs from the risk assessment, the incremental values are below the residential scenario guideline.
- The residential land-use scenario TEQs range from 0.02 pCi to 0.13 pCi; all of which are substantially below the EPA guideline of 75 pCi. Therefore, these DSS sites are eligible for unrestricted radiological release.
- Using the SMML predictive ecological risk methodology, four of the twelve AOCs were evaluated for ecological risk based on the depth of the available data (i.e., 0 to 5 feet deep). The ecological risk for all of these sites is acceptable.
- In conclusion, human health and ecological risks are acceptable per NMED guidance. Thus, these sites are proposed for CAO without institutional controls.

For More Information Contact

U.S. Department of Energy
Sandia Site Office
Environmental Restoration
Mr. John Gould
Telephone: (505) 845-6088

Sandia National Laboratories
Environmental Restoration Project
Task Leader: Brenda Longworth
Telephone: (505) 284-3272

Environmental Restoration Project
Drain and Septic Systems (DSS) Area of Concern (AOC) Sites 1028, 1029, 1083, 1086, 1108, and 1110

Collecting soil samples with the Geoprobe.

Subsurface soil recovered for analyses.

Seepage pit demolition and backfilling.

For More Information Contact
U.S. Department of Energy
Sandia Site Office
Environmental Restoration
Mr. John Gould
Telephone (505) 845-6089

Sandia National Laboratories
Environmental Restoration Project
Task Leader: Brenda Langkof
Telephone (505) 284-3272
Sandia National Laboratories

Justification for Class III Permit Modification

March 2005

DSS Site 1010
Operable Unit 1295
Building 6536 Septic System and Seepage Pit at Technical Area III

NFA (SWMU Assessment Report) Submitted June 2004

Environmental Restoration Project

United States Department of Energy
Sandia Site Office

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Mr. John E. Kieling, Manager
Permits Management Program
Hazardous Waste Bureau
New Mexico Environment Department
2905 Rodeo Park Rd., Building E
Santa Fe, NM 87505

Dear Mr. Kieling,

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Solid Waste Management Unit (SWMU) Assessment Reports and Proposals for No Further Action (NFA) for Drain and Septic Systems (DSS) Sites 1010, 1028, 1083, and 1086. DOE is also submitting the Request for Supplemental Information (RSI) responses for SWMUs 48, 135, 136, 159, 165, 166, and 167; and a soil vapor summary report for Technical Area II at Sandia National Laboratories, New Mexico, EPA ID No. NM5890110518. These documents are compiled as DSS Round 5 and NFA Batch 23.

On April 29, 2004, the final Compliance Order on Consent (Consent Order) for Sandia National Laboratories was issued, replacing the HSWA Module as the sole enforceable mechanism for corrective action. The enclosed SWMU Assessment Reports/NFA Proposals and RSI responses were in the final stage of preparation when the Order was issued; thus, the enclosed documents contain language related to a NFA determination. We are requesting, consistent with the terminology in the Consent Order, an NMED determination of corrective action complete for each of these DSS sites.

This submittal includes descriptions of the site characterization work and risk assessments for DSS Sites 1010, 1028, 1083, and 1086, and SWMUs 48, 135, 136, 159, 165, 166, and 167. The risk assessments conclude that for these eleven sites: (1) there is no significant risk to human health under both the industrial and residential land-use scenarios; and (2) that there are no ecological risks associated with these sites.

Based on the information provided, DOE and Sandia are requesting a determination of corrective action complete without controls for these DSS sites.
If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner
Manager

Enclosure

cc w/ enclosure:
L. King, EPA, Region 6 (2 copies, via Certified Mail)
W. Moats, NMED-HWB (via Certified Mail)
M. Gardipe, NNSA/SC/ERD
C. Voorhees, NMED-OB (Santa Fe)
D. Bierley, NMED-OB

cc w/o enclosure:
J. Bearzi, NMED-HWB
K. Thomas, EPA, Region 6
F. Nimick, SNL, MS 1089
D. Stockham, SNL, MS 1087
P. Freshour, SNL, MS 1087
M. Sanders, SNL, MS 1087
R. Methvin, SNL MS 1089
J. Pavletich, SNL MS 1087
A. Villareal, SNL, MS 1035
A. Blumberg, SNL, MS 0141
M. J. Davis, SNL, MS 1089
ESHSEC Records Center, MS 1087
Sandia National Laboratories/New Mexico Environmental Restoration Project

SWMU ASSESSMENT REPORT AND PROPOSAL FOR NO FURTHER ACTION DRAIN AND SEPTIC SYSTEMS SITE 1010, BUILDING 6536 SEPTIC SYSTEM AND SEEPAGE PIT

June 2004

United States Department of Energy
Sandia Site Office
TABLE OF CONTENTS

LIST OF FIGURES .. iii
LIST OF TABLES ... v
LIST OF ANNEXES ... vii
ACRONYMS AND ABBREVIATIONS ... ix

1.0 PROJECT BACKGROUND ... 1-1

2.0 DSS SITE 1010: BUILDING 6536 SEPTIC SYSTEM AND SEEPAGE PIT .. 2-1

 2.1 Summary ... 2-1
 2.2 Site Description and Operational History .. 2-1
 2.2.1 Site Description .. 2-1
 2.2.2 Operational History .. 2-7
 2.3 Land Use ... 2-7
 2.3.1 Current Land Use .. 2-7
 2.3.2 Future/Proposed Land Use .. 2-7

3.0 INVESTIGATORY ACTIVITIES ... 3-1

 3.1 Summary ... 3-1
 3.2 Investigation 1—Septic Tank Sampling ... 3-1
 3.3 Investigation 2—Passive Soil-Vapor Sampling ... 3-2
 3.3.1 Passive Soil-Vapor Sampling Methodology .. 3-2
 3.3.2 Soil-Vapor Survey Results and Conclusions .. 3-2
 3.4 Investigation 3—Soil Sampling .. 3-3
 3.4.1 Soil Sampling Methodology ... 3-3
 3.4.2 Soil Sampling Results and Conclusions ... 3-3
 3.4.3 Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results 3-24
 3.5 Site Sampling Data Gaps ... 3-26

4.0 CONCEPTUAL SITE MODEL .. 4-1

 4.1 Nature and Extent of Contamination .. 4-1
 4.2 Environmental Fate .. 4-1
 4.3 Site Assessment ... 4-6
 4.3.1 Summary ... 4-6
 4.3.2 Risk Assessments ... 4-6
TABLE OF CONTENTS (Concluded)

4.4 Baseline Risk Assessments ... 4-8
 4.4.1 Human Health ... 4-8
 4.4.2 Ecological .. 4-8

5.0 NO FURTHER ACTION PROPOSAL ... 5-1
 5.1 Rationale .. 5-1
 5.2 Criterion .. 5-1

6.0 REFERENCES .. 6-1
LIST OF FIGURES

Figure

2.2.1-1 Location Map of Drain and Septic Systems (DSS) Site Number 1010, Bldg. 6536 Septic System and Seepage Pit, TA-III ...2-3

2.2.1-2 Site Map of Drain and Septic Systems (DSS) Site Number 1010, Bldg. 6536 Septic System and Seepage Pit, TA-III ...2-5

3.3-1 View into the interior of the single (southwest) seepage pit, constructed of stacked cinder block with an aggregate bottom, and with a drain line from Building 6536 at the top of the unit. July 16, 1999.................................3-5

3.3-2 Soil sampling with the Geoprobe™ at the Building 6536 southwest seepage pit. View to the north toward Building 6536. September 4, 2002......3-7

4.2-1 Conceptual Site Model Flow Diagram for DSS Site 1010, Building 6536 Septic System...4-3
This page intentionally left blank.
LIST OF TABLES

Table

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3-1</td>
<td>Summary of Areas Sampled, Analytical Methods, and Laboratories Used for DSS Site 1010, Building 6536 Septic System and Seepage Pit Soil Samples</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3.2-1</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, VOC Analytical Results, September 2002 (Off-Site Laboratory)</td>
<td>3-12</td>
</tr>
<tr>
<td>3.3.2-2</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, VOC Analytical MDLs, September 2002 (Off-Site Laboratory)</td>
<td>3-13</td>
</tr>
<tr>
<td>3.3.2-3</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, SVOC Analytical Results, September 2002 (Off-Site Laboratory)</td>
<td>3-14</td>
</tr>
<tr>
<td>3.3.2-4</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, SVOC Analytical MDLs, September 2002 (Off-Site Laboratory)</td>
<td>3-15</td>
</tr>
<tr>
<td>3.3.2-5</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, PCB Analytical Results, September 2002 (Off-Site Laboratory)</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.2-6</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, PCB Analytical MDLs, September 2002 (Off-Site Laboratory)</td>
<td>3-18</td>
</tr>
<tr>
<td>3.3.2-7</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, HE Compound Analytical Results, September 2002 (Off-Site Laboratory)</td>
<td>3-19</td>
</tr>
<tr>
<td>3.3.2-8</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, HE Compound Analytical MDLs, September 2002 (Off-Site Laboratory)</td>
<td>3-20</td>
</tr>
<tr>
<td>3.3.2-9</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, Metals Analytical Results, September 2002 (Off-Site Laboratory)</td>
<td>3-21</td>
</tr>
<tr>
<td>3.3.2-10</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, Metals Analytical MDLs, September 2002 (Off-Site Laboratory)</td>
<td>3-22</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.3.2-11</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, Total Cyanide Analytical Results, September 2002 (Off-Site Laboratory)</td>
<td>3-23</td>
</tr>
<tr>
<td>3.3.2-12</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, Total Cyanide Analytical MDLs, September 2002 (Off-Site Laboratory)</td>
<td>3-23</td>
</tr>
<tr>
<td>3.3.2-13</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results, September 2002 (On-Site Laboratory)</td>
<td>3-25</td>
</tr>
<tr>
<td>3.3.2-14</td>
<td>Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit, Confirmatory Soil Sampling, Gross Alpha/Beta Analytical Results, September 2002 (Off-Site Laboratory)</td>
<td>3-26</td>
</tr>
<tr>
<td>4.2-1</td>
<td>Summary of Potential COCs for DSS Site 1010, Building 6536 Septic System and Seepage Pit</td>
<td>4-5</td>
</tr>
<tr>
<td>4.3.2-1</td>
<td>Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1010, Building 6536 Septic System and Seepage Pit Carcinogens</td>
<td>4-7</td>
</tr>
</tbody>
</table>
LIST OF ANNEXES

Annex

A DSS Site 1010 Septic Tank Sampling Results
B DSS Site 1010 Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results
C DSS Site 1010 Soil Sample Data Validation Results
D DSS Site 1010 Risk Assessment
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOC</td>
<td>Area of Concern</td>
</tr>
<tr>
<td>AOP</td>
<td>Administrative Operating Procedure</td>
</tr>
<tr>
<td>BA</td>
<td>butyl acetate</td>
</tr>
<tr>
<td>bgs</td>
<td>below ground surface</td>
</tr>
<tr>
<td>COC</td>
<td>constituent of concern</td>
</tr>
<tr>
<td>DSS</td>
<td>Drain and Septic Systems</td>
</tr>
<tr>
<td>EB</td>
<td>equipment blank</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ER</td>
<td>Environmental Restoration</td>
</tr>
<tr>
<td>FIP</td>
<td>Field Implementation Plan</td>
</tr>
<tr>
<td>GS</td>
<td>Gore-Sorber™</td>
</tr>
<tr>
<td>HE</td>
<td>high explosive(s)</td>
</tr>
<tr>
<td>HI</td>
<td>hazard index</td>
</tr>
<tr>
<td>HWB</td>
<td>Hazardous Waste Bureau</td>
</tr>
<tr>
<td>KAFB</td>
<td>Kirtland Air Force Base</td>
</tr>
<tr>
<td>MDA</td>
<td>minimum detectable activity</td>
</tr>
<tr>
<td>MDL</td>
<td>method detection limit</td>
</tr>
<tr>
<td>mrem</td>
<td>millirem</td>
</tr>
<tr>
<td>NFA</td>
<td>no further action</td>
</tr>
<tr>
<td>NMED</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>OU</td>
<td>Operable Unit</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RPSD</td>
<td>Radiation Protection Sample Diagnostics</td>
</tr>
<tr>
<td>SAP</td>
<td>Sampling and Analysis Plan</td>
</tr>
<tr>
<td>SNL/NM</td>
<td>Sandia National Laboratories/New Mexico</td>
</tr>
<tr>
<td>SVOC</td>
<td>semivolatile organic compound</td>
</tr>
<tr>
<td>SWMU</td>
<td>Solid Waste Management Unit</td>
</tr>
<tr>
<td>TA</td>
<td>Technical Area</td>
</tr>
<tr>
<td>TB</td>
<td>trip blank</td>
</tr>
<tr>
<td>TEDE</td>
<td>total effective dose equivalent</td>
</tr>
<tr>
<td>TOP</td>
<td>Technical Operating Procedure</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>yr</td>
<td>year(s)</td>
</tr>
<tr>
<td>yr</td>
<td>year(s)</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
1.0 PROJECT BACKGROUND

Environmental characterization of Sandia National Laboratories/New Mexico (SNL/NM) drain and septic systems (DSS) started in the early 1990s. These units consist of either septic systems (one or more septic tanks plumbed to either drainfields or seepage pits), or other types of miscellaneous drain units without septic tanks (including drywells or french drains, seepage pits, and surface outfalls). Initially, 23 of these sites were designated as Solid Waste Management Units (SWMUs) under Operable Unit (OU) 1295, Septic Tanks and Drainfields. Characterization work at 22 of these 23 SWMUs has taken place since 1994 as part of SNL/NM Environmental Restoration (ER) Project activities. The twenty-third site did not require any characterization, and an administrative proposal for no further action (NFA) was granted in July 1995.

Numerous other DSS sites that were not designated as SWMUs were also present throughout SNL/NM. An initial list of these non-SWMU sites was compiled and summarized in an SNL/NM document dated July 8, 1996; the list included a total of 101 sites, facilities, or systems (Bleakly July 1996). For tracking purposes, each of these 101 individual DSS sites was designated with a unique four-digit site identification number starting with 1001. This numbering scheme was devised to clearly differentiate these non-SWMU sites from existing SNL/NM SWMUs, which have been designated by one- to three-digit numbers. As work progressed on the DSS site evaluation project, it became apparent that the original 1996 list was in need of field verification and updating. This process included researching SNL/NM's extensive library of facilities engineering drawings and conducting field-verification inspections jointly with SNL/NM ER personnel and New Mexico Environment Department (NMED)/Hazardous Waste Bureau (HWB) regulatory staff from July 1999 through January 2000. The goals of this additional work included the following:

- Determine to the degree possible whether each of the 101 systems included on the 1996 list was still in existence, or had ever existed.
- For systems confirmed or believed to exist, determine the exact or apparent locations and components of those systems (septic tanks, drainfields, seepage pits, etc.).
- Identify which systems would, or would not, need initial shallow investigation work as required by the NMED.
- For systems requiring characterization, determine the specific types of shallow characterization work (including passive soil-vapor sampling and/or shallow soil borings) that would be required by the NMED.

A number of additional drain systems were identified from the engineering drawings and field inspection work. It was also determined that some of the sites on the 1996 list actually contained more than one individual drain or septic system that had been combined under one four-digit site number. In order to reduce confusion, a decision was made to assign each individual system its own unique four-digit number. A new site list containing a total of 121 individual DSS sites was generated in 2000. Of these 121 sites, the NMED required environmental assessment work at a total of 61. No characterization was required at the remaining 60 sites because the sites either were found not to exist, were the responsibility of
other non-SNL/NM organizations, were already designated as individual SWMUs, or were considered by the NMED to pose no threat to human health or the environment. Subsequent backhoe excavation at DSS Site 1091 confirmed that the system did not exist, which decreased the number of DSS sites requiring characterization to 60.

Concurrent with the field inspection and site identification work, NMED/HWB and SNL/NM ER Project technical personnel worked together to reach consensus on a staged approach and specific procedures that would be used to characterize the DSS sites, as well as the remaining OU 1295 Septic Tanks and Drainfield SWMUs that had not been approved for NFA. These procedures are described in detail in the “Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico” (SNL/NM October 1999), which was approved by the NMED/HWB on January 28, 2000 (Bearzi January 2000). A follow-on document, “Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems” (SNL/NM November 2001), was then written to formally document the updated DSS site list and the specific site characterization work required by the NMED for each of the 60 DSS sites. The FIP was approved by the NMED in February 2002 (Moats February 2002).
2.0 DSS SITE 1010: BUILDING 6536 SEPTIC SYSTEM AND SEEPAGE PIT

2.1 Summary

The SNL/NER Project conducted an assessment of DSS Site 1010, the Building 6536 Septic System and Seepage Pit. There are no known or specific environmental concerns at this site. The assessment was conducted to determine whether environmental contamination was released to the environment via the septic system and seepage pit present at the site. This report presents the results of the assessment and, based upon the findings, recommends a risk-based proposal for NFA for DSS Site 1010. This NFA proposal provides documentation that the site was sufficiently characterized, that no significant releases of contaminants to the environment occurred via the Building 6536 Septic System and Seepage Pit, and that it does not pose a threat to human health or the environment under either industrial or residential land-use scenarios. Current operations at the site are conducted in accordance with applicable laws and regulations that are protective of the environment.

Review and analysis of all relevant data for DSS Site 1010 indicate that concentrations of constituents of concern (COCs) at this site were found to be below applicable risk assessment action levels. Thus, DSS Site 1010 is proposed for an NFA decision based upon sampling data demonstrating that COCs released from the site into the environment pose an acceptable level of risk under current and projected future land uses as set forth by Criterion 5, which states: “The SWMU/AOC [Area of Concern] has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use” (NMED March 1998).

2.2 Site Description and Operational History

2.2.1 Site Description

DSS Site 1010 is located in SNL/NM Technical Area (TA)-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (Figure 2.2.1-1). The site is located approximately 950 feet southwest of the entrance to TA-III and is on the southeast side of Building 6536. The abandoned septic system consisted of a septic tank that emptied to a 10-foot-diameter by 15-foot-deep seepage pit. A second 10-foot-diameter by 10-foot-deep seepage pit with no associated septic tank was also installed on the southeast side of Building 6536, approximately 60 feet southwest of the septic system seepage pit (Figure 2.2.1-2). Septic system and seepage pit dimensions are based upon engineering drawings (SNL/NM May 1992) and site inspections. The systems received discharges from Building 6536, approximately 60 feet to the northwest.

The surface geology at DSS Site 1010 is characterized by a veneer of aeolian sediments underlain by Upper Santa Fe Group alluvial fan deposits that interfinger with sediments of the ancestral Rio Grande west of the site. These deposits extend to, and probably far below, the water table at this site. The alluvial fan materials originated in the Manzanita Mountains east of DSS Site 1010, typically consist of a mixture of silts, sands, and gravels that are poorly sorted, and exhibit...
This page intentionally left blank.
Figure 2.2.1-1
Location Map of Drain and Septic Systems (DSS) Site Number 1010, Bldg. 6536 Septic System and Seepage Pit, TA-III

Legend

- ▲ DSS Site 1010
- Major Road
- KAFB Boundary
- USFS Withdrawn Area Boundary
- SNL Technical Area

Sandia National Laboratories, New Mexico
Environmental Geographic Information System
Figure 2.2.1-2
Site Map of Drain and Septic Systems (DSS) Site Number 1010, Bldg. 6536 Septic System and Seepage Pit, TA-III

Legend
- Soil Boring Location
- Gore-Sorber Sample Location
- Septic Tank / Seepage Pit
- Fence
- Road / Walkway
- Building / Structure
- Septic Drain Line

Sandia National Laboratories, New Mexico
Environmental Geographic Information System
moderately connected lenticular bedding. Individual beds range from 1 to 5 feet in thickness with a preferred east-west orientation and have moderate to low hydraulic conductivities (SNL/NM March 1996). Site vegetation primarily consists of desert grasses, shrubs, and cacti.

The ground surface in the vicinity of the site is flat to very slightly sloping to the west. The closest major drainage is the Arroyo del Coyote, located approximately 1 mile northeast of the site. No perennial surface-water bodies are present in the vicinity of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration rates for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996).

The site lies at an average elevation of approximately 5,407 feet above mean sea level (SNL/NM April 2003). Depth to groundwater is approximately 487 feet below ground surface (bgs) at the site. Groundwater flow is thought to be generally to the west in this area (SNL/NM March 2002). The production wells nearest to DSS Site 1010 are KAFB-4 and KAFB-11, approximately 2.8 and 3.2 miles to the northwest and northeast, respectively. The nearest groundwater monitoring well is TAV-MW5, located approximately 900 feet north of the site.

2.2.2 Operational History

Available information indicates that Building 6536 was constructed in 1967, and it is assumed the septic system and seepage pit were constructed at the same time. By June 1991, Building 6536 was connected to an extension of the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system and seepage pit lines were disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003). Building 6536 is currently known as the Re-Entry Burn-Up Simulation Test Facility (SNL/NM March 2003). Because operational records are not available, the site investigation was planned to be consistent with other DSS site investigations and to sample for the COGs most commonly found at similar facilities.

2.3 Land Use

2.3.1 Current Land Use

The current land use for DSS Site 1010 is industrial.

2.3.2 Future/Proposed Land Use

The projected future land use for DSS Site 1010 is industrial (DOE et al. September 1995).
This page intentionally left blank.
3.0 INVESTIGATORY ACTIVITIES

3.1 Summary

Three assessment investigations have been conducted at this site. In late 1990 or early 1991, 1992, and 1995, waste characterization samples were collected from the septic tank (Investigation 1). In 2002, a passive soil-vapor survey was conducted to determine whether areas of significant volatile organic compound (VOC) contamination were present in the soil in the septic system and seepage pit areas (Investigation 2). In 2002, near-surface soil samples were collected from two borings drilled through the center of, and beneath, the two seepage pits at this site (Investigation 3). Investigations 2 and 3 were required by the NMED/HWB to adequately characterize the site and were conducted in accordance with procedures presented in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) described in Chapter 1.0. These investigations are discussed in the following sections.

3.2 Investigation 1—Septic Tank Sampling

Investigation 1 consisted of sampling efforts to characterize the waste contents of all SNL/NM septic tanks for chemical and radiological contamination. The primary goal of the sampling was to identify types and concentrations of potential contaminants in the waste within the tanks so that the appropriate waste disposal and remedial activities could be planned.

Aqueous samples collected in December 1990 or January 1991 were analyzed for semivolatile organic compounds (SVOCs), oil and grease, phenolics, polychlorinated biphenyls (PCBs), metals, and gross alpha/beta activity (SNL/NM April 1991).

Aqueous samples collected on July 7, 1992, were analyzed at an off-site laboratory for VOCs, SVOCs, pesticides, PCBs, metals, phenolic compounds, nitrates/nitrites, formaldehyde, fluoride, cyanide, oil and grease, and radiological constituents. Sludge samples were also collected from the septic tank at the same time and were analyzed for metals, gross alpha/beta activity, tritium, and radiological constituents by gamma spectroscopy. Additional sludge samples were collected on July 29, 1992, and again analyzed for gross alpha/beta activity, tritium, and radiological constituents by gamma spectroscopy (SNL/NM June 1993).

Aqueous samples collected on July 5, 1995, were analyzed at an off-site laboratory for VOCs, SVOCs, pesticides, PCBs, oil and grease, total phenol, metals, formaldehyde, fluoride, nitrate/nitrite, gross alpha/beta activity, tritium, and radiological constituents by gamma spectroscopy. Sludge samples were also collected from the septic tank at the same time and were analyzed for pesticides, PCBs, metals, and radiological constituents. A fraction of each sample was also submitted to the SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory for gamma spectroscopy analysis prior to off-site release (SNL/NM December 1995).

The analytical results for these three septic tank sampling events are presented in Annex A. On August 12, 1996, the residual contents, approximately 1,000 gallons of waste and added water, were pumped out of the Building 6536 septic tank and managed according to SNL/NM policy (Shain August 1996).
3.3 Investigation 2—Passive Soil-Vapor Sampling

In April and May 2002, a passive soil-vapor survey was conducted in the Building 6536 Septic System and Seepage Pit area. This survey was required at this site by NMED/HWB regulators and was conducted to determine whether significant VOC contamination was present in the soil at the site.

3.3.1 Passive Soil-Vapor Sampling Methodology

A Gore-Sorber™ (GS) passive soil-vapor survey is a qualitative screening procedure that can be used to identify many VOCs present in the vapor phase in soil. The technique is highly sensitive to organic vapors, and the result produces a qualitative measure of organic soil vapor chemistry over a two- to three-week period rather than at one point in time.

Each GS soil-vapor sampler consists of a 1-foot-long, 0.25-inch-diameter tube of waterproof, vapor-permeable fabric containing 40 milligrams of absorbent material. At each sampling location, a 3-foot-deep by 1.5-inch-diameter borehole was drilled with the Geoprobe™. A sample identification tag and location string were attached to the GS sampler and lowered into the open borehole to a depth of 1 to 2 feet bgs. The location string was attached to a numbered pin flag at the surface. A cork was placed in the borehole above the sampler as a seal, and the upper 1 foot of the borehole, from the cork to the ground surface, was backfilled with site soil.

The vapor samplers were left in the ground for approximately two weeks before retrieval. After retrieval, each sampler was individually placed into a pre-cleaned jar, sealed, and sent to W.L. Gore and Associates for analysis by thermal desorption and gas chromatography using a modified U.S. Environmental Protection Agency (EPA) Method 8260. Analytical results for the VOCs of interest are reported as mass (expressed in micrograms) of the individual VOCs absorbed by the sampler while it was in the ground (Gore June 2002). All samples were documented and handled in accordance with applicable SNL/NM operating procedures.

3.3.2 Soil-Vapor Survey Results and Conclusions

A total of six GS passive soil-vapor samplers were placed in the septic system and seepage pit area of the site (Figure 2.2.1-2). Samplers were installed at the site on April 25, 2002, and were retrieved on May 10, 2002. Sample locations are designated by the same six-digit sample number both on Figure 2.2.1-2 and in the analytical results tables presented in Annex B.

As shown in the analytical results tables in Annex B, the GS samplers were analyzed for a total of 30 individual or groups of VOCs, including trichloroethene, tetrachloroethene, cis- and trans-dichloroethene, and benzene/toluene/ethylbenzene/xylene. Low to trace-level (but quantifiable) amounts of 14 individual or groups of VOCs were detected in the GS samplers installed at this site. The analytical results indicated there were no areas of significant VOC contamination at the site that would require additional characterization.
3.4 Investigation 3—Soil Sampling

Soil sampling at DSS Site 1010 was conducted in accordance with the rationale and procedures in the SAP (SNL/NM October 1999) approved by the NMED.

On September 4, 2002, soil samples were collected from two boreholes drilled through the center of, and beneath, the two seepage pits at this site. Soil boring locations are shown on Figure 2.2.1-2. Figure 3.3-1 shows the interior of the single (southwestern) seepage pit, and Figure 3.3-2 shows soil samples being collected by drilling a borehole through the center of, and beneath, the unit with the Geoprobe™. A summary of the boreholes, sample depths, sample analyses, analytical methods, laboratories, and sample dates is presented in Table 3.3-1.

3.4.1 Soil Sampling Methodology

An auger drill rig was used to sample all boreholes at two depth intervals. In the boreholes drilled through the center of the seepage pits, the shallow sample interval started at the estimated base of the gravel aggregate in the seepage pit bottom, and the lower (deep) interval started 5 feet below the top of the upper interval. Once the auger rig had reached the top of the sampling interval, a 3- or 4-foot-long by 1.5-inch inside diameter Geoprobe™ sampling tube lined with a butyl acetate (BA) sampling sleeve was inserted into the borehole and hydraulically driven downward 3 or 4 feet to fill the tube with soil.

Once the sample tube was retrieved from the borehole, the sample for VOC analysis was immediately collected by slicing off a 3- to 4-inch section from the lower end of the BA sleeve and capping the section ends with Teflon® film, then a rubber end cap, and finally sealing the tube with tape.

For the non-VOC analyses, the soil remaining in the BA liner was emptied into a decontaminated mixing bowl, and aliquots of soil were transferred into appropriate sample containers for analysis. On occasion, the amount of soil recovered in the first sampling run was insufficient for sample volume requirements. In this case, additional sampling runs were completed until an adequate soil volume was recovered. Soil recovered from these additional runs was emptied into the mixing bowl and blended with the soil already collected. Aliquots of the blended soil were then transferred into sample containers and submitted for analysis.

All samples were documented and handled in accordance with applicable SNL/NM operating procedures and transported to on- and off-site laboratories for analysis.

3.4.2 Soil Sampling Results and Conclusions

Analytical results for the soil samples collected at DSS Site 1010 are presented and discussed in this section.
This page intentionally left blank.
Figure 3.3-1
View into the interior of the single (southwest) seepage pit, constructed of stacked cinder block with an aggregate bottom, and with a drain line from Building 6536 at the top of the unit. July 16, 1999
Figure 3.3-2
Soil sampling with the Geoprobe™ at the Building 6536 southwest seepage pit.
View to the north toward Building 6536. September 4, 2002
Table 3.3-1
Summary of Areas Sampled, Analytical Methods, and Laboratories Used for DSS Site 1010, Building 6536 Septic System and Seepage Pit Soil Samples

<table>
<thead>
<tr>
<th>Sampling Areas</th>
<th>Number of Borehole Locations</th>
<th>Top of Sampling Intervals in each Borehole (ft bgs)</th>
<th>Total Number of Soil Samples</th>
<th>Analytical Parameters and EPA Methodsa</th>
<th>Analytical Laboratory</th>
<th>Date Samples Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septic System</td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>VOCs, EPA Method 8260</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>SVOCs, EPA Method 8270</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>PCBs, EPA Method 8082</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>HE Compounds, EPA Method 8330</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>RCRA Metals, EPA Methods 6000/7000</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>Hexavalent Chromium, EPA Method 7196A</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>Total Cyanide, EPA Method 9012A</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>Gamma Spectroscopy, EPA Method 901.1</td>
<td>RPSD</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15, 20</td>
<td>2</td>
<td>Gross Alpha/Beta Activity, EPA Method 900.0</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td>Seepage Pit</td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>VOCs, EPA Method 8260</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>SVOCS, EPA Method 8270</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>PCBs, EPA Method 8082</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>HE Compounds, EPA Method 8330</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>RCRA Metals, EPA Methods 6000/7000</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>Hexavalent Chromium, EPA Method 7196A</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>Total Cyanide, EPA Method 9012A</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
</tbody>
</table>

Refer to footnotes at end of table.
Table 3.3-1 (Concluded)
Summary of Areas Sampled, Analytical Methods, and Laboratories Used for
DSS Site 1010, Building 6536 Septic System and Seepage Pit Soil Samples

<table>
<thead>
<tr>
<th>Sampling Areas</th>
<th>Number of Borehole Locations</th>
<th>Top of Sampling Intervals in each Borehole (ft bgS)</th>
<th>Total Number of Soil Samples</th>
<th>Analytical Parameters and EPA Methodsa</th>
<th>Analytical Laboratory</th>
<th>Date Samples Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seepage Pit</td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>Gamma Spectroscopy</td>
<td>RPSD</td>
<td>09-04-02</td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
<td></td>
<td></td>
<td>EPA Method 901.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>23, 28</td>
<td>2</td>
<td>Gross Alpha/Beta Activity</td>
<td>GEL</td>
<td>09-04-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPA Method 900.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aEPA November 1986.
bgS = Below ground surface.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
ft = Foot (feet).
GEL = General Engineering Laboratories, Inc.
HE = High explosive(s).
PCB = Polychlorinated biphenyl.
RPSD = Radiation Protection Sample Diagnostics Laboratory.
SVOC = Semivolatile organic compound.
VOC = Volatile organic compound.
VOCs

VOC analytical results for the four soil samples collected from the two seepage pit boreholes are summarized in Table 3.3.2-1. Method detection limits (MDLs) for the VOC soil analyses are presented in Table 3.3.2-2. Only one VOC (2-butanone) was detected from this site. This compound was not detected in the associated trip blank (TB) or equipment blank (EB). It is a common laboratory contaminant and may not indicate soil contamination at this site.

SVOCs

SVOC analytical results for the four soil samples collected from the two seepage pit boreholes are summarized in Table 3.3.2-3. MDLs for the SVOC soil analyses are presented in Table 3.3.2-4. One SVOC (bis[2-ethylhexyl] phthalate) was detected in the two samples from the septic system seepage pit (SP2). This compound was not detected in the associated EB from this site. It is a common component found in plastics and may not indicate soil contamination at this site.

PCBs

PCB analytical results for the four soil samples collected from the two seepage pit boreholes are summarized in Table 3.3.2-5. MDLs for the PCB soil analyses are presented in Table 3.3.2-6. Three PCBs were detected in the soil samples from the septic system seepage pit (SP2). PCBs were not detected in the associated EB from this site.

HE Compounds

High explosive (HE) compound analytical results for the four soil samples collected from the two seepage pit boreholes are summarized in Table 3.3.2-7. MDLs for the HE soil analyses are presented in Table 3.3.2-8. No HE compounds were detected in any of the soil samples or the EB from this site.

RCRA Metals and Hexavalent Chromium

Resource Conservation and Recovery Act (RCRA) metals and hexavalent chromium analytical results for the four soil samples collected from the two seepage pit boreholes are summarized in Table 3.3.2-9. MDLs for the metals in soil analyses are presented in Table 3.3.2-10. None of the metal concentrations detected in the samples exceed the corresponding NMED-approved background concentrations, and significant metals concentrations were not detected in the metals EB collected at this site.

Total Cyanide

Total cyanide analytical results for the four soil samples collected from the two seepage pit boreholes are summarized in Table 3.3.2-11. MDLs for the cyanide soil analyses are presented in Table 3.3.2-12. Cyanide was not detected in any of the soil or EB samples from this site.
Table 3.3.2-1
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, VOC Analytical Results
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Sample Attributes</th>
<th>VOCs (EPA Method 8260<sup>a</sup>) (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Number<sup>b</sup></td>
<td>ER Sample ID</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-23-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-28-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-15-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-20-S</td>
</tr>
</tbody>
</table>

Quality Assurance/Quality Control Samples (µg/L)

| 605669 | 6536-EB | NA | ND (2.31) |
| 605669 | 6536-TB^c | NA | ND (2.31) |

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cER sample ID reflects the final site for VOC samples included in this shipment.

BH = Borehole.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
EB = Equipment blank.
ER = Environmental Restoration.
ft = Foot (feet).
ID = Identification.
MDL = Method detection limit.
µg/kg = Microgram(s) per kilogram.
µg/L = Microgram(s) per liter.
NA = Not applicable.
ND () = Not detected above the MDL, shown in parentheses.
S = Soil sample.
SP = Seepage pit.
TB = Trip blank.
VOC = Volatile organic compound.
Table 3.3.2-2
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, VOC Analytical MDLs
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>EPA Method 8260<sup>a</sup> Detection Limit (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>3.45–3.52</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.441–0.45</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>0.48–0.49</td>
</tr>
<tr>
<td>Bromoform</td>
<td>0.48–0.49</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>0.49–0.5</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>3.67–3.74</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>2.31–2.36</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.48–0.49</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>0.402–0.41</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>0.794–0.81</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.51–0.52</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.363–0.37</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>0.49–0.5</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>0.461–0.47</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.422–0.43</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.49–0.5</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>0.461–0.47</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>0.52–0.53</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>0.471–0.48</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>0.422–0.43</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>0.245–0.25</td>
</tr>
<tr>
<td>Ethyl benzene</td>
<td>0.373–0.38</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>3.7–3.77</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>3.95–4.03</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>1.32–1.35</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.382–0.39</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.692–0.91</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0.373–0.38</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.333–0.34</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>0.52–0.53</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.529–0.54</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0.441–0.45</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>1.75–1.78</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.549–0.56</td>
</tr>
<tr>
<td>Xylene</td>
<td>0.382–0.39</td>
</tr>
</tbody>
</table>

^aEPA November 1986.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
MDL = Method detection limit.
µg/kg = Microgram(s) per kilogram.
VOC = Volatile organic compound.
Table 3.3.2-3
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, SVOC Analytical Results
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Sample Attributes</th>
<th>SVOCs (EPA Method 8270<sup>a</sup>) (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Number<sup>b</sup></td>
<td>ER Sample ID</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-23-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-28-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-15-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-20-S</td>
</tr>
<tr>
<td>Quality Assurance/Quality Control Samples (µg/L)</td>
<td>605669</td>
</tr>
</tbody>
</table>

Note: Values in **bold** represent detected analytes.
^aEPA November 1986.
^bAnalysis request/chain-of-custody record.

BH = Borehole.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
EB = Equipment blank.
ER = Environmental Restoration.
ft = Foot (feet).
ID = Identification.
J () = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.

MDL = Method detection limit.
µg/kg = Microgram(s) per kilogram.
µg/L = Microgram(s) per liter.
NA = Not applicable.
ND () = Not detected above the MDL, shown in parentheses.
S = Soil sample.
SP = Seepage pit.
SVOC = Semivolatile organic compound.
Table 3.3.2-4
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, SVOC Analytical MDLs
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>EPA Method 8270<sup>a</sup> Detection Limit (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>8</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>16.7</td>
</tr>
<tr>
<td>Anthracene</td>
<td>16.7</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>16.7</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>16.7</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>16.7</td>
</tr>
<tr>
<td>Benzo(g,h,i)pyrene</td>
<td>16.7</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>16.7</td>
</tr>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td>34</td>
</tr>
<tr>
<td>Butylbenzyl phthalate</td>
<td>28.7</td>
</tr>
<tr>
<td>Carbazole</td>
<td>16.7</td>
</tr>
<tr>
<td>4-Chlorobenzenamine</td>
<td>167</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>12.3</td>
</tr>
<tr>
<td>bis(2-Chloroethyl)ether</td>
<td>37.3</td>
</tr>
<tr>
<td>bis-Chloroisopropyl ether</td>
<td>11</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>167</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>13.7</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>15.3</td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td>19.7</td>
</tr>
<tr>
<td>Chrysene</td>
<td>16.7</td>
</tr>
<tr>
<td>o-Cresol</td>
<td>26</td>
</tr>
<tr>
<td>Dibenz[a,h]anthracene</td>
<td>16.7</td>
</tr>
<tr>
<td>Dibenzo[1,2]furaran</td>
<td>17</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>10</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>11.3</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>15.7</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>167</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>20.7</td>
</tr>
<tr>
<td>Diethylyphthalate</td>
<td>17.7</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>167</td>
</tr>
<tr>
<td>Dimethylphthalate</td>
<td>18.3</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>24</td>
</tr>
<tr>
<td>Dinitro-o-cresol</td>
<td>167</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>167</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>25.3</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>33.3</td>
</tr>
<tr>
<td>Di-n-octyl phthalate</td>
<td>30.3</td>
</tr>
<tr>
<td>Diphenyl amine</td>
<td>22.3</td>
</tr>
<tr>
<td>bis(2-Ethylhexyl) phthalate</td>
<td>30</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>16.7</td>
</tr>
<tr>
<td>Fluorene</td>
<td>4</td>
</tr>
</tbody>
</table>

Refer to footnotes at end of table.
Table 3.3.2-4 (Concluded)
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, SVOC Analytical MDLs
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>EPA Method 8270<sup>a</sup> Detection Limit (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexachlorobenzene</td>
<td>20</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>12.7</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>167</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>22</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>16.7</td>
</tr>
<tr>
<td>Isophorone</td>
<td>16</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>16.7</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>33.3</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>16.7</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>167</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>167</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>37</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>20.3</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>17</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>167</td>
</tr>
<tr>
<td>n-Nitrosodipropylamine</td>
<td>22.7</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>167</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>16.7</td>
</tr>
<tr>
<td>Phenol</td>
<td>12.7</td>
</tr>
<tr>
<td>Pyrene</td>
<td>16.7</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>12.7</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>17.3</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>27.3</td>
</tr>
</tbody>
</table>

^aEPA November 1986.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
MDL = Method detection limit.
µg/kg = Microgram(s) per kilogram.
SVOC = Semivolatile organic compound.
Table 3.3.2-5
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, PCB Analytical Results
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Record Number</th>
<th>Sample ID</th>
<th>Sample Depth (ft)</th>
<th>Aroclor-1242</th>
<th>Aroclor-1254</th>
<th>Aroclor-1260</th>
</tr>
</thead>
<tbody>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-23-S</td>
<td>23</td>
<td>ND (1.67)</td>
<td>ND (0.5)</td>
<td>ND (1)</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-28-S</td>
<td>28</td>
<td>ND (1.67)</td>
<td>ND (0.5)</td>
<td>ND (1)</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-15-S</td>
<td>15</td>
<td>6.2 J</td>
<td>7.3 J</td>
<td>ND (1)</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-20-S</td>
<td>20</td>
<td>ND (1.67)</td>
<td>31.7 J</td>
<td>38.3 J</td>
</tr>
</tbody>
</table>

Quality Assurance/Quality Control Samples (μg/L)

<table>
<thead>
<tr>
<th>Record Number</th>
<th>Sample ID</th>
<th>Sample Depth (ft)</th>
<th>Aroclor-1242</th>
<th>Aroclor-1254</th>
<th>Aroclor-1260</th>
</tr>
</thead>
<tbody>
<tr>
<td>605669</td>
<td>6536-EB</td>
<td>NA</td>
<td>ND (0.0588)</td>
<td>ND (0.049)</td>
<td>ND (0.049)</td>
</tr>
</tbody>
</table>

Note: Values in **bold** represent detected analytes.

EPA November 1986.

Analysis request/chain-of-custody record.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

EB = Equipment blank.

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification.

J = Estimated concentration.

MDL = Method detection limit.

μg/kg = Microgram(s) per kilogram.

μg/L = Microgram(s) per liter.

NA = Not applicable.

ND () = Not detected above the MDL, shown in parentheses.

PCB = Polychlorinated biphenyl.

S = Soil sample.

SP = Seepage pit.
Table 3.3.2-6
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit Confirmatory Soil Sampling, PCB Analytical MDLs September 2002 (Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>EPA Method 8082a Detection Limit (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>1</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.82</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>1.67</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.67</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>0.5</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>1</td>
</tr>
</tbody>
</table>

aEPA November 1986.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
MDL = Method detection limit.
µg/kg = Microgram(s) per kilogram.
PCB = Polychlorinated biphenyl.
Table 3.3.2-7
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, HE Compound Analytical Results
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Record Number</th>
<th>ER Sample ID</th>
<th>Sample Depth (ft)</th>
<th>HE (EPA Method 8330<sup>a</sup>) (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-23-S</td>
<td>23</td>
<td>ND</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-28-S</td>
<td>28</td>
<td>ND</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-15-S</td>
<td>15</td>
<td>ND</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-20-S</td>
<td>20</td>
<td>ND</td>
</tr>
</tbody>
</table>

Quality Assurance/Quality Control Samples (μg/L)

<table>
<thead>
<tr>
<th>Record Number</th>
<th>ER Sample ID</th>
<th>Sample Depth</th>
<th>HE (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>605669</td>
<td>6536-EB</td>
<td>NA</td>
<td>ND</td>
</tr>
</tbody>
</table>

^aEPA November 1986.
^bAnalysis request/chain-of-custody record.

BH = Borehole.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
EB = Equipment blank.
ER = Environmental Restoration.
ft = Foot (feet).
HE = High explosive(s).
ID = Identification.
μg/kg = Microgram(s) per kilogram.
μg/L = Microgram(s) per liter.
NA = Not applicable.
ND = Not detected.
S = Soil sample.
SP = Seepage pit.
Table 3.3.2-8
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, HE Compound Analytical MDLs
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>EPA Method 8330<sup>a</sup> Detection Limit (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Amino-2,6-dinitrotoluene</td>
<td>34.1</td>
</tr>
<tr>
<td>2-Amino-4,6-dinitrotoluene</td>
<td>18.1</td>
</tr>
<tr>
<td>1,3-Dinitrobenzene</td>
<td>34.1</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>55</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>48</td>
</tr>
<tr>
<td>HMX</td>
<td>48</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>48</td>
</tr>
<tr>
<td>2-Nitrotoluene</td>
<td>24</td>
</tr>
<tr>
<td>3-Nitrotoluene</td>
<td>24</td>
</tr>
<tr>
<td>4-Nitrotoluene</td>
<td>24</td>
</tr>
<tr>
<td>RDX</td>
<td>48</td>
</tr>
<tr>
<td>Tetryl</td>
<td>22.1</td>
</tr>
<tr>
<td>1,3,5-Trinitrobenzene</td>
<td>29</td>
</tr>
<tr>
<td>2,4,6-Trinitrotoluene</td>
<td>48</td>
</tr>
</tbody>
</table>

^aEPA November 1986.

DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
HE = High explosive(s).
HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.
MDL = Method detection limit.
μg/kg = Microgram(s) per kilogram.
RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.
Tetryl = Methyl-2,4,6-trinitrophenylnitramine.
Table 3.3.2-9

Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit

Confirmatory Soil Sampling, Metals Analytical Results

September 2002

(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Sample Attributes</th>
<th>Metals (EPA Method 6000/7000/7196A) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Numberb</td>
<td>Sample ID</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-23-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-28-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-15-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-20-S</td>
</tr>
</tbody>
</table>

Background Concentration—Southwest Area Supergroupc

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Quality Assurance/Quality Control Samples (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>605669</td>
<td>6536-EB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Depth (ft)</th>
<th>Metals</th>
<th>Barium</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Chromium (VI)</th>
<th>Lead</th>
<th>Mercury</th>
<th>Selenium</th>
<th>Silver</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

EPAn EPA November 1986.

Analysis request/chain-of-custody record.

Oinwiddie September 1997.

BH = Borehole.

DSS = Drain and Septic Systems.

EB = Equipment blank.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

HT = The holding time was exceeded for the associated sample analysis.

NC = Not applicable.

NA = Not detected above the MDL, shown in parentheses.

S = Soil sample.

SP = Seepage pit.
Table 3.3.2-10
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, Metals Analytical MDLs
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>EPA Method 6000/7000/7196A<sup>a</sup> Detection Limit (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>0.2–0.204</td>
</tr>
<tr>
<td>Barium</td>
<td>0.0648–0.066</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.0464–0.0473</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.156–0.16</td>
</tr>
<tr>
<td>Chromium (VI)</td>
<td>0.0536–0.0544</td>
</tr>
<tr>
<td>Lead</td>
<td>0.275–0.281</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0000864–0.000945</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.157–0.16</td>
</tr>
<tr>
<td>Silver</td>
<td>0.0876–0.0893</td>
</tr>
</tbody>
</table>

^aEPA November 1986.

DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
MDL = Method detection limit.
mg/kg = Milligram(s) per kilogram.
Table 3.3.2-11
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit Confirmatory Soil Sampling, Total Cyanide Analytical Results
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Sample Attributes</th>
<th>(EPA Method 9012(^a)) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Number(^b)</td>
<td>ER Sample ID</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-23-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-28-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-15-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-20-S</td>
</tr>
<tr>
<td>Qualify Assurance/Quality Control Samples (mg/L)</td>
<td>Na</td>
</tr>
</tbody>
</table>

\(^a\)EPA November 1986.
\(^b\)Analysis request/chain-of-custody record.
BH = Borehole.
DSS = Drain and Septic Systems.
EB = Equipment blank.
EPA = U.S. Environmental Protection Agency.
ER = Environmental Restoration.
ft = Foot (feet).
ID = Identification.
MDL = Method detection limit.
mg/kg = Milligram(s) per kilogram.
mg/L = Milligram(s) per liter.
NA = Not applicable.
ND () = Not detected above the MDL, shown in parentheses.
S = Soil sample.
SP = Seepage pit.

Table 3.3.2-12
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit Confirmatory Soil Sampling, Total Cyanide Analytical MDLs
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>EPA Method 9012A(^a) Detection Limit (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cyanide</td>
<td>0.0221–0.0419</td>
</tr>
</tbody>
</table>

\(^a\)EPA November 1986.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
MDL = Method detection limit.
mg/kg = Milligram(s) per kilogram.
Radionuclides

Analytical results for the gamma spectroscopy analyses of the four soil samples collected from the two seepage pit boreholes are summarized in Table 3.3.2-13. No activities above NMED-approved background levels were detected in any sample analyzed. However, although not detected, the minimum detectable activities (MDAs) for uranium-235 exceed the background activity because the standard gamma spectroscopy count time for soil samples (6,000 seconds) was not sufficient to reach the NMED-approved background activity established for SNL/NM soils. Even though the MDAs may be slightly elevated, the values are still very low, and the risk assessment outcome for the site is not significantly impacted by their use.

Gross Alpha/Beta Activity

Gross alpha/beta analytical results for the four soil samples collected from the two seepage pit boreholes are summarized in Table 3.3.2-14. No gross alpha or beta activity was detected above the New Mexico-established background levels (Miller September 2003) in any of the soil samples or the gross alpha/beta EB. These results indicate no significant levels of radioactive material are present in the soil at the site.

3.4.3 Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results

Throughout the DSS Project, quality assurance/quality control samples were collected at an approximate frequency of 1 per 20 field samples. These included duplicate, EB, and TB samples. Typically, samples were shipped to the laboratory in batches of up to 20 samples, so that any one shipment might contain samples from several sites. Aqueous EB samples were collected at an approximate frequency of 1 per 20 site samples. The EB samples were analyzed for the same analytical suite as the soil samples in that shipment. The analytical results for the EB samples appear only on the data tables for the site where they were collected. However, the results were used in the data validation process for all the samples in that batch.

Aqueous TB samples, for VOC analysis only, were included in every sample cooler containing VOC soil samples. The analytical results for the TB samples appear on the VOC data tables for the sites in that shipment. The results were used in the data validation process for all the samples in that batch. No VOCs were detected in the TB for DSS Site 1010 (Table 3.3.2-1).

A set of aqueous EB samples were collected following the completion of soil sampling at DSS Site 1010 in September 2002. The EB samples were analyzed for the same constituents as the soil samples that were sent to the off-site commercial laboratory for analysis. The EB analytical results, presented on the DSS Site 1010 data summary tables, are discussed in the previous section.

No duplicate samples were collected at this site.

All laboratory data were reviewed and verified/validated according to “Verification and Validation of Chemical and Radiochemical Data,” Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project “Data Validation Procedure for Chemical and
Table 3.3.2-13
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results
September 2002
(On-Site Laboratory)

<table>
<thead>
<tr>
<th>Sample Attributes</th>
<th>Activity (EPA Method 901.1<sup>a</sup>) (pCi/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cesium-137</td>
</tr>
<tr>
<td></td>
<td>Result</td>
</tr>
<tr>
<td>Record Number<sup>b</sup></td>
<td>ER Sample ID</td>
</tr>
<tr>
<td>605733</td>
<td>6536-SP1-BH1-25-S</td>
</tr>
<tr>
<td>605733</td>
<td>6536-SP1-BH1-30-S</td>
</tr>
<tr>
<td>605733</td>
<td>6536-SP2-BH1-15-S</td>
</tr>
<tr>
<td>605733</td>
<td>6536-SP2-BH1-19-S</td>
</tr>
<tr>
<td>Background Activity—Southwest Area</td>
<td></td>
</tr>
</tbody>
</table>

Note: Values in **bold** exceed background soil activities.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cTwo standard deviations about the mean detected activity.

^dDinwiddie September 1997.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification.

MDA = Minimum detectable activity.

NA = Not applicable.

ND () = Not detected, but the MDA (shown in parentheses) exceeds background activity.

ND () = Not detected above the MDA, shown in parentheses.

pCi/g = Picocurie(s) per gram.

S = Soil sample.

SP = Seepage pit.

-- = Error not calculated for nondetect results.
Table 3.3.2-14
Summary of DSS Site 1010, Building 6536 Septic System and Seepage Pit
Confirmatory Soil Sampling, Gross Alpha/Beta Analytical Results
September 2002
(Off-Site Laboratory)

<table>
<thead>
<tr>
<th>Sample Attributes</th>
<th>Activity (EPA Method 900.0<sup>a</sup>) (pCi/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Number<sup>b</sup></td>
<td>ER Sample ID</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-23-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP1-BH1-28-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-15-S</td>
</tr>
<tr>
<td>605669</td>
<td>6536-SP2-BH1-20-S</td>
</tr>
<tr>
<td>Background Activity<sup>d</sup></td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance/Quality Control Samples (pCi/L)

| Record Number^b | ER Sample ID | Result | Error^c |
|-------------------|---|
| 605669 | 6536-EB | 0.243 | 0.36 |

Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December 1999). In addition, SNL/NM Department 7713 (RPSD Laboratory) reviewed all gamma spectroscopy results according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 02 (SNL/NM July 1996). Annex C contains the data validation reports for the samples collected at this site. The data are acceptable for use in this NFA proposal.

3.5 Site Sampling Data Gaps

Analytical data from the site assessment were sufficient for characterizing the nature and extent of possible COC releases. There are no further data gaps regarding characterization of DSS Site 1010.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cTwo standard deviations about the mean detected activity.

^dMiller September 2003.

BH = Borehole.

DSS = Drain and Septic Systems.

EB = Equipment blank.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification.

NA = Not applicable.

pCi/g = Picocurie(s) per gram.

pCi/L = Picocurie(s) per liter.

S = Soil sample.

SP = Seepage pit.
4.0 CONCEPTUAL SITE MODEL

The conceptual site model for DSS Site 1010 is based upon the COCs identified in the soil samples collected from beneath the two seepage pits at this site. This section summarizes the nature and extent of contamination and the environmental fate of the COCs.

4.1 Nature and Extent of Contamination

Potential COCs at DSS Site are VOCs, SVOCs, PCBs, HE compounds, cyanide, RCRA metals, hexavalent chromium, and radionuclides. One VOC, one SVOC, and three PCB compounds were detected in soil samples from this site. HE compounds, cyanide, and hexavalent chromium were not detected at this site. None of the eight RCRA metals were detected at concentrations above the approved maximum background concentrations for SNL/NM Southwest Area Supergroup soils (Dinwiddie September 1997) or above the nonquantified background concentrations. When a metal concentration exceeded its maximum background screening value, or had no quantified background value, it was considered further in the risk assessment process. None of the four representative gamma spectroscopy radionuclides were detected at activities exceeding the corresponding background levels. However, the MDAs for three of the four uranium-235 analyses exceed the corresponding Southwest Area Supergroup background activity for uranium-235. Finally, no gross alpha/beta activity was detected above the New Mexico-established background levels.

4.2 Environmental Fate

Potential COCs may have been released into the vadose zone via aqueous effluent discharged from the septic system and seepage pit. Possible secondary release mechanisms include the uptake of COCs that may have been released into the soil beneath the two seepage pits at this site (Figure 4.2-1). The depth to groundwater at the site (approximately 487 feet bgs) most likely precludes migration of potential COCs into the groundwater system. The potential pathways to receptors include soil ingestion, dermal contact, and inhalation, which could occur as a result of receptor exposure to contaminated subsurface soil at the site. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Annex D provides additional discussion on the fate and transport of COCs at DSS Site 1010.

Table 4.2-1 summarizes the potential COCs for DSS Site 1010. All potential COCs were retained in the conceptual model and were evaluated in both the human health and ecological risk assessments. The current and future land use for DSS Site 1010 is industrial (DOE et al. September 1995).

The potential human receptors at the site are considered to be an industrial worker and resident. The exposure routes for the receptors are dermal contact and ingestion/inhalation; however, these are realistic possibilities only if contaminated soil is excavated at the site. The major exposure route modeled in the human health risk assessment is soil ingestion for COCs. The inhalation pathway is included because of the potential to inhale dust and volatiles. The dermal pathway is included because of the potential for receptors to be exposed to the contaminated soil.
This page intentionally left blank.
Figure 4.2-1
Conceptual Site Model Flow Diagram for DSS Site 1010, Building 6536 Septic System and Seepage Pit
Table 4.2-1
Summary of Potential COCs for DSS Site 1010, Building 6536 Septic System and Seepage Pit

<table>
<thead>
<tr>
<th>COC Type</th>
<th>Number of Samples<sup>a</sup></th>
<th>COCs Detected or with Concentrations Greater than Background or Nonquantified Background</th>
<th>Maximum Background Limit/Southwest Area Supergroup<sup>b</sup> (mg/kg)</th>
<th>Maximum Concentration<sup>c</sup> (All Samples) (mg/kg)</th>
<th>Average Concentration<sup>d</sup> (mg/kg)</th>
<th>Number of Samples Where COCs Detected or with Concentrations Greater than Background or Nonquantified Background<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>VOCs</td>
<td>4</td>
<td>2-Butanone</td>
<td>NA</td>
<td>0.0112</td>
<td>0.0068</td>
<td>3</td>
</tr>
<tr>
<td>SVOCs</td>
<td>4</td>
<td>bis(2-Ethylhexyl) phthalate</td>
<td>NA</td>
<td>0.0861</td>
<td>0.0439</td>
<td>2</td>
</tr>
<tr>
<td>PCBs</td>
<td>4</td>
<td>Aroclor-1242</td>
<td>NA</td>
<td>0.0062 J</td>
<td>0.0022</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Aroclor-1254</td>
<td>NA</td>
<td>0.0317 J</td>
<td>0.0099</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Aroclor-1260</td>
<td>NA</td>
<td>0.0383</td>
<td>0.0099</td>
<td>1</td>
</tr>
<tr>
<td>HE Compounds</td>
<td>4</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>RCRA Metals</td>
<td>4</td>
<td>Mercury</td>
<td>NQ</td>
<td>0.0221</td>
<td>0.0116</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Selenium</td>
<td>NQ</td>
<td>0.311 J</td>
<td>0.1373</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Silver</td>
<td>NQ</td>
<td>ND (0.0893)</td>
<td>0.0443</td>
<td>None</td>
</tr>
<tr>
<td>Hexavalent Chromium</td>
<td>4</td>
<td>None</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>Cynide</td>
<td>4</td>
<td>Cyanide</td>
<td>NQ</td>
<td>ND (0.0419)</td>
<td>0.0167</td>
<td>None</td>
</tr>
<tr>
<td>Radionuclides</td>
<td>4</td>
<td>Gamma Spectroscopy</td>
<td>Uranium-235</td>
<td>0.16</td>
<td>ND (0.185)</td>
<td>NC<sup>f</sup></td>
</tr>
<tr>
<td>(pCi/g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>4</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>4</td>
<td>None</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>None</td>
</tr>
</tbody>
</table>

^aNumber of samples includes duplicates and splits.

^bDinwiddie September 1997.

^cMaximum concentration is either the maximum amount detected, or if nothing was detected, the maximum MDL or MDA above background or nonquantified background.

^dAverage concentration includes all samples except blanks. The average is calculated as the sum of detected amounts and one-half of the MDLs for nondetect results, divided by the number of samples.

^eSee appropriate data table for sample locations.

^fAn average MDA is not calculated because of the variability in instrument counting error and the number of reported nondetect activities for gamma spectroscopy.

Abbreviations:
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- HE = High explosive(s).
- J = Estimated concentration.
- MDA = Minimum detectable activity.
- MDL = Method detection limit.
- mg/kg = Milligram(s) per kilogram.
- NA = Not applicable.
- NC = Not calculated.
- ND () = Not detected above the MDL or MDA, shown in parentheses.
- NQ = Nonquantified background value.
- PCB = Polychlorinated biphenyl.
- pCi/g = Picocurie(s) per gram.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.
No pathways to groundwater and no intake routes through flora or fauna are considered appropriate for either the industrial or residential land-use scenarios. Annex D provides additional discussion of the exposure routes and receptors at DSS Site 1010.

4.3 Site Assessment

Site assessment at DSS Site 1010 included risk assessments for both human health and ecological risk. This section briefly summarizes the site assessment results, and Annex D discusses the risk assessment performed for DSS Site 1010 in more detail.

4.3.1 Summary

The site assessment concluded that DSS Site 1010 poses no significant threat to human health under either the industrial or residential land-use scenarios. Ecological risks were found to be insignificant because no pathways exist.

4.3.2 Risk Assessments

Risk assessments were performed for both human health and ecological risk at DSS Site 1010. This section summarizes the results.

4.3.2.1 Human Health

DSS Site 1010 has been recommended for an industrial land-use scenario (DOE et al. September 1995). Because 2-butanone, bis(2-ethylhexyl) phthalate, PCBs, mercury, selenium, silver, cyanide, and uranium-235 are present above background or have nonquantified background levels, it was necessary to perform a human health risk assessment analysis for the site, which included these COCs. Annex D provides a complete discussion of the risk assessment process, results, and uncertainties. The risk assessment process provides a quantitative evaluation of the potential adverse human health effects from constituents in the site's soil by calculating the hazard index (HI) and excess cancer risk for both industrial and residential land-use scenarios.

The HI calculated for the COCs at DSS Site 1010 is 0.00 for the industrial land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.00. The excess cancer risk for DSS Site 1010 COCs for an industrial land-use scenario is 4E-10. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental excess cancer risk is 4.49E-10. Both the incremental HI and excess cancer risk are below NMED guidelines.

The HI calculated for the COCs at DSS Site 1010 is 0.00 for the residential land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from
potential nonradiological COC risk (without rounding), is 0.00. The excess cancer risk for DSS Site 1010 COCs is 2E-9 for a residential land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental excess cancer risk is 1.95E-9. Both the incremental HI and incremental excess cancer risk are below NMED guidelines.

For the radiological COCs, one of the constituents (uranium-235) had MDA values greater than the corresponding background values.

The incremental total effective dose equivalent (TEDE) and corresponding estimated cancer risk from radiological COCs are much lower than the EPA guidance values; the estimated TEDE is 3.6E-3 millirem (mrem)/year (yr) for the industrial land-use scenario. This value is much lower than the EPA’s numerical guidance of 15 mrem/yr (EPA 1997a). The corresponding incremental estimated cancer risk value is 4.1E-8 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional controls is 9.3E-3 mrem/yr with an associated risk of 1.2E-7. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1010 is eligible for unrestricted radiological release.

The nonradiological and radiological carcinogenic risks are tabulated and summed in Table 4.3.2-1.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Nonradiological Risk</th>
<th>Radiological Risk</th>
<th>Total Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>4.49E-10</td>
<td>4.1E-8</td>
<td>4.1E-8</td>
</tr>
<tr>
<td>Residential</td>
<td>1.95E-9</td>
<td>1.2E-7</td>
<td>1.2E-7</td>
</tr>
</tbody>
</table>

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

4.3.2.2 Ecological

An ecological assessment that corresponds with the procedures in the EPA’s Ecological Risk Assessment Guidance for Superfund (EPA 1997b) also was performed as set forth by the NMED Risk-Based Decision Tree in the “RPMP Document Requirement Guide” (NMED March 1998). An early step in the evaluation compared COC concentrations and identified potentially bioaccumulative constituents (see Annex D, Sections IV, VII.2, and VII.2.1). This methodology also required developing a site conceptual model and a food web model, as well as selecting ecological receptors, as presented in “Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico” (IT July 1998). The risk assessment also includes the estimation of exposure and ecological risk.
All COCs at DSS Site 1010 are located at depths greater than 5 feet bgs. Therefore, no complete ecological pathways exist at this site, and a more detailed ecological risk assessment is not necessary.

4.4 Baseline Risk Assessments

This section discusses the baseline risk assessments for human health and ecological risk.

4.4.1 Human Health

Because the results of the human health risk assessment summarized in Section 4.3.2.1 indicate that DSS Site 1010 poses insignificant risk to human health under both the industrial and residential land-use scenarios, a baseline human health risk assessment is not required for this site.

4.4.2 Ecological

Because the results of the ecological risk assessment summarized in Section 4.3.2.2 indicate that no complete pathways exist at DSS Site 1010, a baseline ecological risk assessment is not required for the site.
5.0 NO FURTHER ACTION PROPOSAL

5.1 Rationale

Based upon field investigation data and the human health and ecological risk assessment analyses, an NFA decision is recommended for DSS Site 1010 for the following reasons:

- The soil has been sampled for all potential COCs.
- No COCs are present in the soil at levels considered hazardous to human health for either an industrial or residential land-use scenario.
- None of the COCs warrant ecological concern because no complete pathways exist at the site.

5.2 Criterion

Based upon the evidence provided in Section 5.1, DSS Site 1010 is proposed for an NFA decision according to Criterion 5, which states, "the SWMU/ACC has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use" (NMED March 1998).
This page intentionally left blank.
6.0 REFERENCES

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Gore, see Gore, W.L. and Associates.

IT, see IT Corporation.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal Memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Miller, M. (Sandia National Laboratories/New Mexico), September 2003. Memorandum to F.B. Nimick (Sandia National Laboratories/New Mexico), regarding “State of New Mexico Background for Gross Alpha/Beta Assays in Soil Samples.” September 12, 2003.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanic and Atmospheric Administration.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), May 1992. SNL/NM Facilities Engineering Drawing 89788, Sheet M-1 showing the Building 6536 Septic System and Seepage Pit, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Shain, M. (IT Corporation), August 1996. Memorandum and spreadsheet to J. Jones (Sandia National Laboratories/New Mexico) summarizing dates, locations, and volume of effluent pumped from numerous Sandia National Laboratories/New Mexico septic tanks at Sandia National Laboratories/New Mexico, Albuquerque, New Mexico. August 23, 1996.

SNL/NM, see Sandia National Laboratories/New Mexico.

ANNEX A
DSS Site 1010
Septic Tank Sampling Results
Results of septic tank sampling conducted between 12/18/90 and 1/8/91 for buildings noted.

Dionne

Nick Durand,
For your information

David Dionne
TABLE 5

SUMMARY OF ANALYTICAL RESULTS FOR DETECTED PARAMETERS
TECHNICAL AREA III AND COYOTE CANYON TEST FIELD
SEPTIC TANK SAMPLING

BUILDING 6536

SAMPLE NUMBERS SNLA004876, SNLA004877

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Results</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMIVOLATILE ORGANICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenol*</td>
<td>50</td>
<td>μg/l</td>
</tr>
<tr>
<td>4-Methylphenol*</td>
<td>180</td>
<td>μg/l</td>
</tr>
<tr>
<td>Benzoic Acid*</td>
<td>660</td>
<td>μg/l</td>
</tr>
<tr>
<td>INORGANICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>44</td>
<td>mg/l</td>
</tr>
<tr>
<td>Phenolics</td>
<td>0.21</td>
<td>mg/l</td>
</tr>
<tr>
<td>PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1242*</td>
<td>2.3</td>
<td>μg/l</td>
</tr>
<tr>
<td>METALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.2</td>
<td>mg/l</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.013</td>
<td>mg/l</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.033</td>
<td>mg/l</td>
</tr>
<tr>
<td>Copper</td>
<td>1.2</td>
<td>mg/l</td>
</tr>
<tr>
<td>Lead</td>
<td>0.11</td>
<td>mg/l</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.18</td>
<td>mg/l</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0010</td>
<td>mg/l</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.063</td>
<td>mg/l</td>
</tr>
<tr>
<td>Zinc</td>
<td>1.1</td>
<td>mg/l</td>
</tr>
<tr>
<td>RADIOLOGICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>21</td>
<td>pCi/l</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>59</td>
<td>pCi/l</td>
</tr>
</tbody>
</table>

*Not on total toxic organic list
Buildings 6535 and 6536
Area 3
Sample ID No. SNLA008421
Tank ID No. NRN

On July 7, 1992, aqueous and sludge samples were collected from the septic tank serving Buildings 6535 and 6536. Analytical results of concern are noted below.

- Cadmium was detected in the aqueous sample at a level of 0.02 mg/L, which exceeds the New Mexico Water Quality Control Commission Regulations discharge limit (NMDL) of 0.01 mg/L.

- Lead was detected in the aqueous sample at a level of 0.26 mg/L, which exceeds the NMDL of 0.05 mg/L.

- Mercury was detected in the aqueous sample at a level of 0.0036 mg/L, which exceeds the NMDL of 0.002 mg/L.

- Total phenolic compounds were detected in the aqueous sample at a level of 0.029 mg/L, which exceeds the NMDL of 0.005 mg/L.

No other parameters were detected in the aqueous fractions above NMDLs, City of Albuquerque discharge limits, or Resource Conservation and Recovery Act toxicity characteristic.

The holding time for volatile organic compounds analysis was exceeded by 39 days due to analytical laboratory error. An exceeded holding time qualifies the data by presenting the possibility that the data is biased low. The laboratory report also indicated that laboratory contamination had been confirmed for bis (2-ethylhexyl)phthalate, which was measured at low levels in the septic tank sample.

During review of the radiological data, no parameters were detected that exceed U.S. Department of Energy (DOE) derived concentration guideline (DCG) limits or the investigation levels (IL) established during this investigation.
Results of Septic Tank Analyses

(FLUID SAMPLES)

<table>
<thead>
<tr>
<th>Building No./Area:</th>
<th>6535/36 A-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank ID No.:</td>
<td>NRN</td>
</tr>
<tr>
<td>Date Sampled:</td>
<td>7/7/92</td>
</tr>
<tr>
<td>Sample ID No.:</td>
<td>SNLA-006421</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analytical Parameter</th>
<th>Measured Concentration</th>
<th>State Discharge Limit</th>
<th>COA Discharge Limit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics (EPA 624)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0.0058</td>
<td>0.1</td>
<td>(TTO=5.0)</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0042</td>
<td>0.75</td>
<td>(TTO=5.0)</td>
<td>Below reporting limit</td>
</tr>
<tr>
<td>Semivolatile Organics (EPA 625)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td></td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>0.038</td>
<td>NR</td>
<td>(TTO=5.0)</td>
<td>Below reporting limit (presence of laboratory contamination confirmed)</td>
</tr>
<tr>
<td>Pesticides (EPA 608)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td></td>
</tr>
<tr>
<td>None detected above laboratory</td>
<td>NR</td>
<td>(TTO=5.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs (EPA 608)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td></td>
</tr>
<tr>
<td>None detected above laboratory</td>
<td>0.001</td>
<td>(TTO=5.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>ND (0.010)</td>
<td>0.1</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.24</td>
<td>1.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.026</td>
<td>0.01</td>
<td>2.8</td>
<td>Exceeds State Limit</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.017</td>
<td>0.05</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.26</td>
<td>1.0</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.26</td>
<td>0.05</td>
<td>3.2</td>
<td>Exceeds State Limit</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.16</td>
<td>0.20</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0036</td>
<td>0.002</td>
<td>0.1</td>
<td>Exceeds State Limit</td>
</tr>
<tr>
<td>Nickel</td>
<td>ND (NR)</td>
<td>NR</td>
<td>12.0</td>
<td>Not analyzed</td>
</tr>
<tr>
<td>Selenium</td>
<td>ND (0.010)</td>
<td>0.05</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>0.019</td>
<td>0.05</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>ND (0.020)</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>4.2</td>
<td>10.0</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>ND (0.007)</td>
<td>5.0</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Analytes</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td>(mg/l)</td>
<td></td>
</tr>
<tr>
<td>Phenolic Compounds</td>
<td>0.029</td>
<td>0.005</td>
<td>4.0</td>
<td>Exceeds State Limit</td>
</tr>
<tr>
<td>Nitrates/Nitrates</td>
<td>ND (1.0)</td>
<td>10.0</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>ND (1.0)</td>
<td>NR</td>
<td>260.0</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.040</td>
<td>1.6</td>
<td>180.0</td>
<td></td>
</tr>
<tr>
<td>Cyanide</td>
<td>ND (0.010)</td>
<td>0.2</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>4.4</td>
<td>NR</td>
<td>150.0</td>
<td></td>
</tr>
<tr>
<td>Radiological Analyses</td>
<td>(pCi/l)</td>
<td>(pCi/l)</td>
<td>(pCi/l)</td>
<td></td>
</tr>
<tr>
<td>Radium 226</td>
<td>0 +/- 0.1</td>
<td>30.0</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Radium 228</td>
<td>10 +/- 30</td>
<td>30.0</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>10 +/- 20</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Gross Beta</td>
<td>40 +/- 60</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>253 +/- 285</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

NR = Not Regulated; ND(##) = Not Detected (Reporting Limit)

Note: City and State Discharge Limits are for comparison purposes only. City limits apply to discharge of sanitary effluent and not septic tank waste, state limits apply to effluent discharged onto or below the surface of the ground.

References - City of Albuquerque NW Sewer Use and Wastewater Control Ordinance (1990), Section 9-9-3, and New Mexico Water Quality Control Commission Regulations (1988), Section 3-100.
Results of Septic Tank Analyses

Building No./Area: 6535/36 A-3

Tank ID No.: NRN

Date Sampled: 7/7/92

Sample ID No.: SNLA008421

<table>
<thead>
<tr>
<th>Analytical Parameter</th>
<th>Measured Concentration</th>
<th>± 2 Sigma Uncertainty</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Content</td>
<td>95.5</td>
<td>NA</td>
<td>%</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ND(1.0)</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Barium</td>
<td>13.4</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.9</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.5</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Copper</td>
<td>18.9</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Lead</td>
<td>18.5</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Manganese</td>
<td>7.0</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Mercury</td>
<td>ND(0.10)</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Nickel</td>
<td>ND</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Selenium</td>
<td>ND(0.50)</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Silver</td>
<td>2.3</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Thallium</td>
<td>ND(0.50)</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Zinc</td>
<td>270</td>
<td>NA</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>16</td>
<td>13</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>42</td>
<td>23</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>16</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>20</td>
<td>27</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>12</td>
<td>12</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>34</td>
<td>23</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>15</td>
<td>13</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>28</td>
<td>23</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Tritium</td>
<td>253</td>
<td>285</td>
<td>pCi/L</td>
</tr>
<tr>
<td>Bismuth-214</td>
<td><0.0324</td>
<td>NA</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>0.0888</td>
<td>0.00366</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Potassium-40</td>
<td>0.240</td>
<td>0.0617</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Lead-212</td>
<td>0.0217</td>
<td>0.00667</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Lead-214</td>
<td>0.0334</td>
<td>0.00786</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Radium-226</td>
<td>0.165</td>
<td>0.0778</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Thorium-234</td>
<td><0.229</td>
<td>NA</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Thallium-208</td>
<td><0.0144</td>
<td>NA</td>
<td>pCi/mL</td>
</tr>
</tbody>
</table>

ND = Not Detected
NA = Not Applicable
Results of Septic Tank Analyses (Sludge Sample)

Building No./Area: 6536 A-3
Tank ID No.: NRN
Date Sampled: 7/29/92
Sample ID No.: SNLA008579

<table>
<thead>
<tr>
<th>Analytical Parameter</th>
<th>Measured Concentration</th>
<th>± 2 Sigma Uncertainty</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>6</td>
<td>17</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>18</td>
<td>42</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>5</td>
<td>17</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>24</td>
<td>45</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>9</td>
<td>17</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>20</td>
<td>42</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>6</td>
<td>16</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>8</td>
<td>38</td>
<td>pCi/g</td>
</tr>
<tr>
<td>Tritium</td>
<td>0E+02</td>
<td>3E+02</td>
<td>pCi/L</td>
</tr>
<tr>
<td>Bismuth-214</td>
<td>0.400</td>
<td>0.0208</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Cesium-137</td>
<td><0.0171</td>
<td>NA</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Potassium-40</td>
<td>0.407</td>
<td>0.0691</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Lead-212</td>
<td>0.0292</td>
<td>0.00482</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Lead-214</td>
<td>0.309</td>
<td>0.0187</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Radium-226</td>
<td><0.278</td>
<td>NA</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Thorium-234</td>
<td><0.213</td>
<td>NA</td>
<td>pCi/mL</td>
</tr>
<tr>
<td>Thallium-208</td>
<td><0.0145</td>
<td>NA</td>
<td>pCi/mL</td>
</tr>
</tbody>
</table>

ND = Not Detected
NA = Not Applicable
RESULTS OF SEPTIC TANK SAMPLING
CHEMICAL ANALYSES OF AQUEOUS SAMPLE

Building ID: Bldg 6536
Sample ID Number: 024386
Date Sampled: 7-05-95

<table>
<thead>
<tr>
<th>Parameter (Method)</th>
<th>Result</th>
<th>Detection Limit (DL)</th>
<th>NM Discharge Limit¹</th>
<th>COA Discharge Limit²</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics (8260)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>0.014</td>
<td>0.010</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Semivolatile Organics (8270)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td></td>
</tr>
<tr>
<td>bis(2-Ethylhexyl)Phthalate</td>
<td>0.007J</td>
<td>0.010</td>
<td>NR</td>
<td>TTO = 5.0</td>
<td></td>
</tr>
<tr>
<td>Pesticides/PCBs (8080)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td></td>
</tr>
<tr>
<td>None detected above DL</td>
<td>ND</td>
<td>various</td>
<td>NR / PCBs = 0.001</td>
<td>TTO = 5.0</td>
<td></td>
</tr>
<tr>
<td>Metals (6010/7470)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.0034J</td>
<td>0.010</td>
<td>0.1</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>0.0164J</td>
<td>0.200</td>
<td>1.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>ND</td>
<td>0.005</td>
<td>0.01</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>ND</td>
<td>0.020</td>
<td>0.05</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.016J</td>
<td>0.025</td>
<td>1.0</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.0028J</td>
<td>0.003</td>
<td>0.05</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0351</td>
<td>0.015</td>
<td>0.2</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>ND</td>
<td>0.040</td>
<td>0.2</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>ND</td>
<td>0.005</td>
<td>0.05</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>ND</td>
<td>0.010</td>
<td>0.05</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>ND</td>
<td>0.010</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.0479</td>
<td>0.020</td>
<td>10.0</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>ND</td>
<td>0.0002</td>
<td>0.002</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Analyses</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td>(mg/L)</td>
<td></td>
</tr>
<tr>
<td>Field pH</td>
<td>7.6 pH units</td>
<td>0 - 14 pH units</td>
<td>6 - 9 pH units</td>
<td>5 - 11 pH units</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde (NIOSH 3500)</td>
<td>0.54</td>
<td>0.50</td>
<td>NR</td>
<td>250.0</td>
<td></td>
</tr>
<tr>
<td>Fluoride (200.0)</td>
<td>ND</td>
<td>0.20</td>
<td>1.6</td>
<td>190.0</td>
<td></td>
</tr>
<tr>
<td>Nitrate + Nitrite (353.1)</td>
<td>61</td>
<td>5.0</td>
<td>10.0</td>
<td>NR</td>
<td>Exceeds NM Discharge Limit.</td>
</tr>
</tbody>
</table>

Refer to footnotes at end of table.
RESULTS OF SEPTIC TANK SAMPLING
RADIOLOGICAL ANALYSES OF AQUEOUS SAMPLE

Building ID: Bldg 6536
Sample ID Number: 024386
Date Sampled: 7-05-95

<table>
<thead>
<tr>
<th>Parameter (Method)</th>
<th>Result</th>
<th>MDA</th>
<th>Critical Level</th>
<th>NM Discharge Limit*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiological Analyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Alpha (9310)</td>
<td>9.35 ± 3.35</td>
<td>4.87</td>
<td>2.05</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Gross Beta (9310)</td>
<td>38.5 ± 4.4</td>
<td>2.0</td>
<td>0.91</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Isotopic Analyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium (906.0)</td>
<td>1.7 ± 52.6</td>
<td>88.3</td>
<td>44.2</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Gamma Spectroscopy¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None detected above MDA</td>
<td>ND</td>
<td>various</td>
<td>NL</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
* New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.
* Analyzed in-house by SNL/NM Department 7715.
MDA = Minimum detectable activity.
ND = Not detected above MDA indicated.
NL = Not listed.
NR = Not regulated.
RESULTS OF SEPTIC TANK SAMPLING

CHEMICAL ANALYSES OF SLUDGE SAMPLE

Building ID: Bldg 6536
Sample ID Number: 024386
Date Sampled: 7-05-95
Percent Moisture: Not Reported

<table>
<thead>
<tr>
<th>Parameter (Method)</th>
<th>Result</th>
<th>Detection Limit (DL)</th>
<th>NM Discharge Limit<sup>a</sup></th>
<th>COA Discharge Limit<sup>b</sup></th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticides/PCBs (8080)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endrin Aldehyde</td>
<td>ND X</td>
<td>290</td>
<td>NR</td>
<td>TTO = 5.0</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>8200</td>
<td>3800</td>
<td>0.001</td>
<td>TTO = 5.0</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>4100</td>
<td>390</td>
<td>0.001</td>
<td>TTO = 5.0</td>
<td></td>
</tr>
<tr>
<td>Metals (6010/7470)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>4.6J</td>
<td>11.4</td>
<td>0.1</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>183J</td>
<td>229</td>
<td>1.0</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>35.6</td>
<td>5.7</td>
<td>0.01</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>54.5</td>
<td>22.9</td>
<td>0.05</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>1820</td>
<td>28.6</td>
<td>1.0</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>265</td>
<td>3.4</td>
<td>0.05</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>222</td>
<td>17.1</td>
<td>0.2</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>81.6</td>
<td>45.7</td>
<td>0.2</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>4.1J</td>
<td>5.7</td>
<td>0.05</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>182</td>
<td>11.4</td>
<td>0.05</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>ND</td>
<td>11.4</td>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>2200</td>
<td>22.9</td>
<td>10.0</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>2.9</td>
<td>1.1</td>
<td>0.002</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

^a New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.
^b City of Albuquerque Sewer Use and Wastewater Control Ordinance (1993), Section 8-9-3 M – maximum allowable concentration for grab sample.
B = Analyte detected in method blank.
X = Matrix Interference during analysis.
DL = Detection limit indicated on laboratory report.
IDL = Instrument detection limit.
J = Estimated concentration of analyte, between DL and IDL.
ND = Not detected above DL indicated.
NR = Not regulated.
TTO = Total toxic organics.
RESULTS OF SEPTIC TANK SAMPLING
CHEMICAL ANALYSES OF AQUEOUS SAMPLE

Building ID: Bldg 6536
Sample ID Number: 024386
Date Sampled: 7-05-95

<table>
<thead>
<tr>
<th>Parameter (Method)</th>
<th>Result</th>
<th>Detection Limit (DL)</th>
<th>NM Discharge Limita</th>
<th>COA Discharge Limitb</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Analyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil + Grease (9070)</td>
<td>2.55</td>
<td>0.98</td>
<td>NR</td>
<td>150.0</td>
<td></td>
</tr>
<tr>
<td>Total Phenol (9066)</td>
<td>ND</td>
<td>0.050</td>
<td>0.005</td>
<td>4.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.

b City of Albuquerque Sewer Use and Wastewater Control Ordinance (1993), Section 8-9-3 M – maximum allowable concentration for grab sample.

DL = Detection limit indicated on laboratory report.

IDL = Instrument detection limit.

J = Estimated concentration of analyte, between DL and IDL.

ND = Not detected above DL indicated.

NR = Not regulated.

TTO = Total toxic organics.
RESULTS OF SEPTIC TANK SAMPLING
RADIOLOGICAL ANALYSES OF SLUDGE SAMPLE

Building ID: Bldg 6536
Sample ID Number: 024386
Date Sampled: 7-05-95
Percent Moisture: Not Reported

<table>
<thead>
<tr>
<th>Parameter (Method)</th>
<th>Result</th>
<th>MDA</th>
<th>Critical Level</th>
<th>NM Discharge Limit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(pCi/g ± 2σ)</td>
<td>(pCi/g)</td>
<td>(pCi/g)</td>
<td>(pCi/g)</td>
<td></td>
</tr>
<tr>
<td>Isotopic Analyses*</td>
<td>0.002 ± 0.007</td>
<td>0.018</td>
<td>0.012</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Plutonium-239/240</td>
<td>-0.003 ± 0.001</td>
<td>0.018</td>
<td>0.012</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Strontium-90</td>
<td>0.21 ± 0.04</td>
<td>0.39</td>
<td>0.19</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Thorium-232</td>
<td>0.18 ± 0.09</td>
<td>0.034</td>
<td>0.030</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Thorium-230</td>
<td>0.30 ± 0.13</td>
<td>0.042</td>
<td>0.033</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Thorium-228</td>
<td>0.22 ± 0.11</td>
<td>0.089</td>
<td>0.057</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Uranium-238</td>
<td>4.38 ± 0.81</td>
<td>0.023</td>
<td>0.016</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Uranium-235/238</td>
<td>1.69 ± 0.34</td>
<td>0.025</td>
<td>0.018</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Uranium-234</td>
<td>5.50 ± 1.01</td>
<td>0.021</td>
<td>0.015</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Dry Gamma Spectroscopy*</td>
<td>0.068 ± 0.018</td>
<td>0.016</td>
<td>0.008</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Cesium-137</td>
<td>ND</td>
<td>0.013</td>
<td>0.006</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Potassium-40</td>
<td>4.44 ± 0.52</td>
<td>0.13</td>
<td>0.064</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Chromium-51</td>
<td>ND</td>
<td>0.14</td>
<td>0.069</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Iron-59</td>
<td>ND</td>
<td>0.036</td>
<td>0.017</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>ND</td>
<td>0.016</td>
<td>0.008</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Zirconium-95</td>
<td>ND</td>
<td>0.027</td>
<td>0.013</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Ruthenium-103</td>
<td>ND</td>
<td>0.016</td>
<td>0.008</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Ruthenium-106</td>
<td>ND</td>
<td>0.12</td>
<td>0.059</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Cerium-144</td>
<td>ND</td>
<td>0.087</td>
<td>0.043</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Thallium-208</td>
<td>0.10 ± 0.02</td>
<td>0.014</td>
<td>NL</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Lead-212</td>
<td>0.25 ± 0.03</td>
<td>0.02</td>
<td>0.011</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Lead-214</td>
<td>0.26 ± 0.04</td>
<td>0.03</td>
<td>0.015</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Bismuth-212</td>
<td>0.22 ± 0.09</td>
<td>0.10</td>
<td>NL</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Bismuth-214</td>
<td>0.24 ± 0.04</td>
<td>0.03</td>
<td>NL</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Radium-226</td>
<td>0.24 ± 0.03</td>
<td>0.03</td>
<td>0.013</td>
<td>30.0'</td>
<td></td>
</tr>
</tbody>
</table>

Refer to footnotes at end of table.
RESULTS OF SEPTIC TANK SAMPLING

RADIOLOGICAL ANALYSES OF SLUDGE SAMPLE

<table>
<thead>
<tr>
<th>Building ID:</th>
<th>Bldg 6536</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ID Number:</td>
<td>024386</td>
</tr>
<tr>
<td>Date Sampled:</td>
<td>7-05-95</td>
</tr>
<tr>
<td>Percent Moisture:</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter (Method)</th>
<th>Result</th>
<th>MDA</th>
<th>Critical Level</th>
<th>NM Discharge Limit*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radium-228</td>
<td>ND</td>
<td>0.079</td>
<td>0.039</td>
<td>30.0*</td>
<td></td>
</tr>
<tr>
<td>Actinium-228</td>
<td>ND</td>
<td>0.079</td>
<td>0.039</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Thorium-231</td>
<td>ND</td>
<td>0.42</td>
<td>0.21</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Thorium-232</td>
<td>ND</td>
<td>0.079</td>
<td>0.039</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Thorium-234</td>
<td>2.47 ± 0.50</td>
<td>0.39</td>
<td>0.19</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Uranium-235</td>
<td>0.13 ± 0.02</td>
<td>0.09</td>
<td>0.044</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Uranium-238</td>
<td>2.47 ± 0.50</td>
<td>0.39</td>
<td>0.19</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Americium-241</td>
<td>ND</td>
<td>0.47</td>
<td>0.23</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.
- Isotopic uranium analyzed by NAS-NS-3050; plutonium by SL13028/SL13033; strontium by 7500-SR; thorium by NAS-NS-3004.
- Analyzed by method HASL 300 at Quanterra, St. Louis.
- NMWWCCR standard for Ra-226 + Ra-228 combined in pCi/L.
- MDA = Minimum detectable activity.
- ND = Not detected above MDA indicated.
- NR = Not regulated.
- NL = Not listed.
ANNEX B
DSS Site 1010
Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results
GORE-SORBER® Screening Survey
Final Report

Non-ER Drain & Septic
Kirtland AFB, NM

June 6, 2002

Prepared For:
Sandia National Laboratories
Mail Stop 0719, 1515 Eubank, SE
Albuquerque, NM 87123

W.L. Gore & Associates, Inc.

Written/Submitted by:
Jay W. Hodny, Ph.D., Project Manager

Reviewed/Approved by:
Jim E. Whetzel, Project Manager

Analytical Data Reviewed by:
Jim E. Whetzel, Chemist

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates
GORE-SORBER® Screening Survey
Final Report

REPORT DATE: June 6, 2002

SITE INFORMATION

Site Reference: Non-ER Drain & Septic, Kirtland AFB, NM
Customer Purchase Order Number: 28518
Gore Production Order Number: 10960025
Gore Site Code: CCT, CCX

FIELD PROCEDURES

Modules shipped: 142
Installation Date(s): 4/23, 24, 25, 26, 29, 30/2002; 5/1, 6/2002
Modules Installed: 135
Field work performed by: Sandia National Laboratories

Retrieval date(s): 5/8, 9, 10, 14, 15, 16, 21/2002
Modules Retrieved: 131
Modules Lost in Field: 4
Modules Not Returned: 1

Exposure Time: ~15 [days]

Trip Blanks Returned: 3
Unused Modules Returned: 3

Date/Time Received by Gore: 5/17/2002 @ 2:00 PM; 5/24/2002 @ 1:30 PM

Chain of Custody Form attached: ✓

Chain of Custody discrepancies: None

Comments:
Modules #179227, -228, and -229 were identified as trip blanks.
Modules #179137, -138, -140, and -141 were not retrieved and considered lost from the field.
Module #179231 was not returned.
Modules #179230, 232, and -233 were returned unused.

Instrumentation consists of state of the art gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

Analytical Method Quality Assurance:
The analytical method employed is a modified EPA method 8260/8270. Before each run sequence, two instrument blanks, a sorber containing 5µg BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in the method before samples can be analyzed. A method blank and a sorber containing BFB is also analyzed after every 30 samples and/or trip blanks. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 10µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by 1) the presence of the target ion and at least two secondary ions; 2) retention time versus reference standard; and, 3) the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection
Instrument ID: # 2 Chemist: JW
Compounds/mixtures requested: Gore Standard VOC/SVOC Target Compounds (A1)
Deviations from Standard Method: None
Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 6). Module #179091 was returned and noted as damaged, no carbonaceous sorbers; therefore, target compound masses reported in data table cannot be compared to the mass data from the other modules directly. Module #179101, no identification tag was returned with this module.
DATA TABULATION

CONTOUR MAPS ENCLOSED: No contour maps were generated.

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore & Associates, Inc., as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

General Comments:
- This survey reports soil gas mass levels present in the vapor phase. Vapors are subject to a variety of attenuation factors during migration away from the source concentration to the module. Thus, mass levels reported from the module will often be less than concentrations reported in soil and groundwater matrix data. In most instances, the soil gas masses reported on the modules compare favorably with concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels relative to other sampled locations on the site, matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.
- Soil gas signals reported by this method cannot be identified specifically to soil adsorbed, groundwater, and/or free-product contamination. The soil gas signal reported from each module can evolve from all of these sources. Differentiation between soil and groundwater contamination can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater contamination only).
- QA/QC trip blank modules were provided to document potential exposures that were not part of the soil gas signal of interest (i.e., impact during module shipment, installation and retrieval, and storage). The trip blanks are identically manufactured and packaged soil gas modules to those modules placed in the subsurface. However, the trip blanks remain unopened during all phases of the soil gas survey. Levels reported on the trip blanks may indicate potential impact to modules other than the contaminant source of interest.
Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central gas chromatograph elution time in the total ion chromatogram. Typically, UPEs are indicative of complex fluid mixtures that are present in the subsurface. UPEs observed early in the chromatogram are considered to indicate the presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

Project Specific Comments:
- Stacked total ion chromatograms (TICs) are included in Appendix A. The six-digit serial number of each module is incorporated into the TIC identification (e.g.: \texttt{123456S.D} represents module \texttt{#123456}).
- No target compounds were detected on the trip blanks and/or the method blanks. Thus, target analyte levels reported for the field-installed modules that exceed trip and method blank levels, and the analyte method detection limit, have a high probability of originating from on-site sources.
- A small subset of modules was placed at each of several site locations; therefore no contour mapping was performed. Larger and more comprehensive soil gas surveys may be warranted at the individual sites where elevated soil gas levels were observed.

GORE-SORBER® Screening Survey
Final Report
6 of 6

GORE-SORBER® Screening Survey
Final Report

KEY TO DATA TABLE
Non-ER Drain & Septic, Kirtland AFB, NM

<table>
<thead>
<tr>
<th>UNITS</th>
<th>micrograms (per sorber), reported for compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>method detection limit</td>
</tr>
<tr>
<td>MDL</td>
<td>below detection limit</td>
</tr>
<tr>
<td>bdl</td>
<td>non-detect</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYTES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTEX</td>
<td>combined masses of benzene, toluene, ethylbenzene and total xylenes (Gasoline Range Aromatics)</td>
</tr>
<tr>
<td>BENZ</td>
<td>benzene</td>
</tr>
<tr>
<td>TOL</td>
<td>toluene</td>
</tr>
<tr>
<td>EtBENZ</td>
<td>ethylbenzene</td>
</tr>
<tr>
<td>mpXYL</td>
<td>m-, p-xylene</td>
</tr>
<tr>
<td>oXYL</td>
<td>o-xylene</td>
</tr>
<tr>
<td>C11,C13&C15</td>
<td>combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) (Diesel Range Alkanes)</td>
</tr>
<tr>
<td>UNDEC</td>
<td>undecane</td>
</tr>
<tr>
<td>TRIDEC</td>
<td>tridecane</td>
</tr>
<tr>
<td>PENTADEC</td>
<td>pentadecane</td>
</tr>
<tr>
<td>TMBs</td>
<td>combined masses of 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene</td>
</tr>
<tr>
<td>l35TMB</td>
<td>1,3,5-trimethylbenzene</td>
</tr>
<tr>
<td>l24TMB</td>
<td>1,2,4-trimethylbenzene</td>
</tr>
<tr>
<td>cms12DCE</td>
<td>cis- & trans-1,2-dichloroethene</td>
</tr>
<tr>
<td>t12DCE</td>
<td>trans-1,2-dichloroethene</td>
</tr>
<tr>
<td>c12DCE</td>
<td>cis-1,2-dichloroethene</td>
</tr>
<tr>
<td>NAPH&2-MN</td>
<td>combined masses of naphthalene and 2-methyl naphthalene</td>
</tr>
<tr>
<td>NAPH</td>
<td>naphthalene</td>
</tr>
<tr>
<td>2MeNAPH</td>
<td>2-methyl naphthalene</td>
</tr>
<tr>
<td>MTBE</td>
<td>methyl t-butyl ether</td>
</tr>
<tr>
<td>11DCA</td>
<td>1,1-dichloroethane</td>
</tr>
<tr>
<td>CHCl3</td>
<td>chloroform</td>
</tr>
<tr>
<td>111TCA</td>
<td>1,1,1-trichloroethane</td>
</tr>
<tr>
<td>l2DCA</td>
<td>1,2-dichloroethane</td>
</tr>
<tr>
<td>CC14</td>
<td>carbon tetrachloride</td>
</tr>
<tr>
<td>TCE</td>
<td>trichloroethene</td>
</tr>
<tr>
<td>OCT</td>
<td>octane</td>
</tr>
<tr>
<td>PCE</td>
<td>tetrachloroethene</td>
</tr>
<tr>
<td>CIBENZ</td>
<td>chlorobenzene</td>
</tr>
<tr>
<td>14DCB</td>
<td>1,4-dichlorobenzene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLANKS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFn</td>
<td>unexposed trip blanks, travels with the exposed modules</td>
</tr>
<tr>
<td>method blank</td>
<td>QA/QC module, documents analytical conditions during analysis</td>
</tr>
</tbody>
</table>

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates
APPENDIX A:

1. CHAIN OF CUSTODY
2. DATA TABLE
3. STACKED TOTAL ION CHROMATOGRAMS
GORE-SORBER® Screening Survey Chain of Custody

For W.L. Gore & Associates use only
Production Order # 10960025

W. L. Gore & Associates, Inc., Survey Products Group
100 Chesapeake Boulevard • Elkton, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

Instructions: Customer must complete ALL shaded cells

<table>
<thead>
<tr>
<th>Customer Name: SANDIA NATIONAL LABS</th>
<th>Site Name: NON-ER DRAIN+ SEPTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: ACCOUNTS PAYABLE MS0154</td>
<td>Site Address: KIRTLAND</td>
</tr>
<tr>
<td>P.O. BOX 5130 ALBUQUERQUE NM 87185 U.S.A.</td>
<td>Project Manager: MIKE SANDERS</td>
</tr>
<tr>
<td>Phone: 505-284-3303</td>
<td>Customer Project No.:</td>
</tr>
<tr>
<td>FAX: 505-284-2616</td>
<td>Customer P.O. #: 28518 Quote #: 211946</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial # of Modules Shipped</th>
<th># of Modules for Installation</th>
<th># of Trip Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td># 179087 - # 179144</td>
<td>135</td>
<td>7</td>
</tr>
<tr>
<td># 179150 - # 179233</td>
<td>Total Modules Shipped: 142 Pieces</td>
<td></td>
</tr>
<tr>
<td># 179150 - 179151</td>
<td>Total Modules Received: 142 Pieces</td>
<td></td>
</tr>
<tr>
<td># 179150 - 179233</td>
<td>Total Modules Installed: 135 Pieces</td>
<td></td>
</tr>
<tr>
<td>Serial # of Trip Blanks (Client Decides)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepared By: [Name]
Verified By: [Name]

Installation Performed By:
Name (please print): GILBERT QUINTANA
Company/Affiliation: SNC/LM

Installation Start Date and Time: 4/23/02 10:45 AM
Installation Complete Date and Time: 5/6/02 09:00 AM

Installation Method(s) (circle those that apply):
- Slide Hammer
- Hammer Drill
- Auger
- Other: GORF-PF

Retrieval Performed By:
Name (please print): GILBERT QUINTANA
Company/Affiliation: SNC/LM

Retrieval Start Date and Time: 5/8/02 AM
Retrieval Complete Date and Time: |

Relinquished By:
Affiliation: W.L. Gore & Associates, Inc.

Date | **Time** | **Received By** | **Affiliation** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4-02</td>
<td>12:00</td>
<td>Mike Sanders</td>
<td>SANDIA/ER</td>
</tr>
<tr>
<td>5-19-02</td>
<td>14:00</td>
<td>[Name]</td>
<td>W.L. Gore & Associates, Inc.</td>
</tr>
</tbody>
</table>

GORE-SORBER® Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.
Instructions: Customer must complete ALL shaded cells

Customer Name: SANDIA NATIONAL LABS
Address: ACCOUNTS PAYABLE MS0154
P.O. Box: 5130
City: ALBUQUERQUE
State: NM
Zip Code: 87185
USA
Phone: 505-284-3303
Fax: 505-289-2616

Site Name: NON-ER DUAIN+ SEPTIC
Site Address: KIPLAND
Project Manager: MIKE SANDERS
Customer Project No.:
Customer P.O. #: 28518
Quote #: 211946

<table>
<thead>
<tr>
<th>Serial # of Modules Shipped</th>
<th># of Modules for Installation</th>
<th># of Trip Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td># 179087 - # 179144</td>
<td>135</td>
<td>7</td>
</tr>
<tr>
<td># 179150 - # 179233</td>
<td></td>
<td></td>
</tr>
<tr>
<td># - - #</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Serial # of Trip Blanks (Client Decides):

Installation Performed By:
Name (please print): GILBERT QUINTANA
Company/Affiliation:
Installation Start Date and Time: 4/27/02 10:815
Installation Complete Date and Time: 5/6/02 10:901

Retrieval Performed By:
Name (please print): GILBERT QUINTANA
Company/Affiliation:
Retrieval Start Date and Time: 5/8/02 1:00
Retrieval Complete Date and Time:

Relinquished By:
Affiliation: W.L. Gore & Associates, Inc.
Date: 3-4-02
Time: 13:42
Received By: MIKE SANDERS
Affiliation: Sandia, 6133
Date: 3-7-02

Relinquished By:
Affiliation:
Date: 5-21-02
Time: 09:35
Received By:
Affiliation:
Date:

Relinquished By:
Affiliation: Sandia NL, 6133
Date:
Time:
Received By:
Affiliation:
Date:

Relinquished By:
Affiliation:
Date:
Time:
Received By:
Affiliation:
Date:

Relinquished By:
Affiliation:
Date:
Time:
Received By:
Affiliation:
Date:

Relinquished By:
Affiliation:
Date:
Time:
Received By:
Affiliation:
Date:

Relinquished By:
Affiliation:
Date:
Time:
Received By:
Affiliation:
Date:

GORE-SORBER® Screening Survey Chain of Custody is a registered service mark of W.L. Gore & Associates, Inc.
<table>
<thead>
<tr>
<th>LINE #</th>
<th>MODULE #</th>
<th>INSTALLATION DATE/TIME</th>
<th>RETRIEVAL DATE/TIME</th>
<th>EVIDENCE OF LIQUID HYDROCARBONS (LPH) or HYDROCARBON ODOR (check as appropriate)</th>
<th>MODULE IN WATER (check one)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>179087</td>
<td>4/23/82 08:15</td>
<td>05-08-82 08:00</td>
<td></td>
<td>yes/LPH 698-65-5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>179088</td>
<td>08 27</td>
<td></td>
<td></td>
<td></td>
<td>65-3</td>
</tr>
<tr>
<td>3</td>
<td>179089</td>
<td>08 30</td>
<td></td>
<td></td>
<td>65-2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>179090</td>
<td>08 40</td>
<td></td>
<td></td>
<td>65-4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>179091</td>
<td>08:52</td>
<td>08:30</td>
<td></td>
<td>yes/603-65-1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>179092</td>
<td>09:52</td>
<td>08:30</td>
<td></td>
<td>65-1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>179093</td>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
<td>-4</td>
</tr>
<tr>
<td>8</td>
<td>179094</td>
<td>09:00</td>
<td></td>
<td></td>
<td></td>
<td>-3</td>
</tr>
<tr>
<td>9</td>
<td>179095</td>
<td>10:18</td>
<td></td>
<td></td>
<td></td>
<td>-2</td>
</tr>
<tr>
<td>10</td>
<td>179096</td>
<td>11:35</td>
<td>09:00</td>
<td></td>
<td>6501/657-65-5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>179097</td>
<td>11:51</td>
<td></td>
<td></td>
<td></td>
<td>-6</td>
</tr>
<tr>
<td>12</td>
<td>179098</td>
<td>12:38</td>
<td></td>
<td></td>
<td>65-4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>179099</td>
<td>12:47</td>
<td></td>
<td></td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>179100</td>
<td>12:54</td>
<td></td>
<td></td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>179101</td>
<td>13:09</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>179102</td>
<td>13:47</td>
<td>09 20</td>
<td></td>
<td>1062/66-6-4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>179103</td>
<td>13:55</td>
<td></td>
<td></td>
<td>1062/66-6-4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>179104</td>
<td>14:08</td>
<td></td>
<td></td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>179105</td>
<td>14:31</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>179106</td>
<td>14:46</td>
<td></td>
<td></td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>179107</td>
<td>4/24/82 08:48</td>
<td>5-9-82 07:30</td>
<td></td>
<td>108/653-65-5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>179108</td>
<td>09:53</td>
<td></td>
<td></td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>179109</td>
<td>09:00</td>
<td></td>
<td></td>
<td>1-4</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>179110</td>
<td>09:07</td>
<td></td>
<td></td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>179111</td>
<td>09:16</td>
<td></td>
<td></td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>179112</td>
<td>09:36</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>179113</td>
<td>4/25/82 07:46</td>
<td>5-10-82 08:12</td>
<td></td>
<td>1027/6530-65-5</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>179114</td>
<td>07:54</td>
<td></td>
<td></td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>179115</td>
<td>06:00</td>
<td></td>
<td></td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>179116</td>
<td>06:10</td>
<td></td>
<td></td>
<td>1-4</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>179117</td>
<td>06:18</td>
<td>09:17</td>
<td></td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>179118</td>
<td>09:15</td>
<td>5-10-82 09:25</td>
<td></td>
<td>1094/6536-65-5</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>179119</td>
<td>07:22</td>
<td></td>
<td></td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>179120</td>
<td>07:31</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>179121</td>
<td>09:42</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>179122</td>
<td>09:47</td>
<td>08:13</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>179123</td>
<td>09:54</td>
<td></td>
<td></td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>179124</td>
<td>10:26</td>
<td>5-10-82 10:13</td>
<td></td>
<td>1028/6560-65-5</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>179125</td>
<td>10:32</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>179126</td>
<td>10:52</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>179127</td>
<td>11:03</td>
<td>10:41</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>179128</td>
<td>11:20</td>
<td></td>
<td></td>
<td>1024/6501-65-5</td>
<td></td>
</tr>
<tr>
<td>DATE ANALYZED</td>
<td>SAMPLE NAME</td>
<td>BTEX, ug</td>
<td>BENZ, ug</td>
<td>TOL, ug</td>
<td>EtBENZ, ug</td>
<td>mpXYL, ug</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179097</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>0.01</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179098</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179099</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179100</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179101</td>
<td>0.06</td>
<td>nd</td>
<td>0.04</td>
<td>nd</td>
<td>0.02</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179102</td>
<td>0.01</td>
<td>nd</td>
<td>0.01</td>
<td>nd</td>
<td>0.02</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179103</td>
<td>0.44</td>
<td>nd</td>
<td>0.19</td>
<td>0.04</td>
<td>0.17</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179104</td>
<td>0.01</td>
<td>nd</td>
<td>nd</td>
<td>0.01</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179105</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.08</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179106</td>
<td>0.03</td>
<td>nd</td>
<td>0.03</td>
<td>bdl</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179107</td>
<td>0.09</td>
<td>nd</td>
<td>0.07</td>
<td>nd</td>
<td>0.02</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179108</td>
<td>0.06</td>
<td>nd</td>
<td>0.04</td>
<td>nd</td>
<td>0.02</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179109</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179110</td>
<td>0.00</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179111</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179112</td>
<td>0.04</td>
<td>nd</td>
<td>0.03</td>
<td>nd</td>
<td>0.01</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179113</td>
<td>0.02</td>
<td>nd</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179114</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179115</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>0.02</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179116</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179117</td>
<td>0.09</td>
<td>nd</td>
<td>0.07</td>
<td>nd</td>
<td>0.03</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179118</td>
<td>0.16</td>
<td>nd</td>
<td>0.11</td>
<td>nd</td>
<td>0.05</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179119</td>
<td>0.08</td>
<td>nd</td>
<td>0.06</td>
<td>nd</td>
<td>0.01</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179120</td>
<td>0.33</td>
<td>nd</td>
<td>0.21</td>
<td>nd</td>
<td>0.09</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179121</td>
<td>0.07</td>
<td>nd</td>
<td>0.05</td>
<td>nd</td>
<td>0.02</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179122</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179123</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>5/20/2002</td>
<td>179124</td>
<td>0.10</td>
<td>nd</td>
<td>0.08</td>
<td>nd</td>
<td>0.02</td>
</tr>
</tbody>
</table>

No mdl is available for summed combinations of analytes. In summed columns (e.g., BTEX), the reported values should be considered estimated if any of the individual compounds were reported as bdl.
<table>
<thead>
<tr>
<th>SAMPLE NAME</th>
<th>124TMB, ug</th>
<th>135TMB, ug</th>
<th>c12DCE, ug</th>
<th>t12DCE, ug</th>
<th>c12DCE, ug</th>
<th>NAPH&2-MN, ug</th>
<th>NAPH, ug</th>
<th>2MeNAP, ug</th>
<th>MTBE, ug</th>
<th>11DCA, ug</th>
<th>11TCA, ug</th>
<th>12DCA, ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDL=</td>
<td>0.03</td>
<td>0.02</td>
<td>0.14</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179087</td>
<td>0.06</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.11</td>
<td>0.06</td>
<td>0.05</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179088</td>
<td>bdl</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.02</td>
<td>0.02</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179089</td>
<td>bdl</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179090</td>
<td>0.04</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.15</td>
<td>0.10</td>
<td>0.05</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179091</td>
<td>0.03</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.02</td>
<td>0.02</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179092</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179093</td>
<td>nd</td>
</tr>
<tr>
<td>179094</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179095</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179096</td>
<td>0.06</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.56</td>
<td>0.34</td>
<td>0.23</td>
<td>nd</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179097</td>
<td>0.03</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179098</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179099</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179100</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179101</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.02</td>
<td>0.02</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179102</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179103</td>
<td>0.04</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.10</td>
<td>0.04</td>
<td>0.06</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179104</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179105</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179106</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179107</td>
<td>0.04</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.09</td>
<td>0.07</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179108</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179109</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.01</td>
<td>0.01</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179110</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.02</td>
<td>0.02</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179111</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179112</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.03</td>
<td>nd</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179113</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179114</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179115</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179116</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179117</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179118</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179119</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179120</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179121</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179122</td>
<td>nd</td>
</tr>
<tr>
<td>179123</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179124</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.00</td>
<td>nd</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

No mdl is available for summed combinations of analytes. In summed columns (e.g., BTEX), the ESTIMATED values should be considered if any of the individual compounds were reported as bdl.
Table: Gore Sorber Screening Survey Analytical Results

<table>
<thead>
<tr>
<th>SAMPLE NAME</th>
<th>124TMB, ug</th>
<th>135TMB, ug</th>
<th>ct12DCE, ug</th>
<th>t12DCE, ug</th>
<th>c12DCE, ug</th>
<th>NAPH&2-MN, ug</th>
<th>NAPH, ug</th>
<th>2MeNAPH, ug</th>
<th>MTBE, ug</th>
<th>11DCA, ug</th>
<th>111TCA, ug</th>
<th>12DCA, ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDL=</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>179210</td>
<td>0.03</td>
<td>nd</td>
<td></td>
<td>0.14</td>
<td>0.03</td>
<td>0.10</td>
<td>0.05</td>
<td>0.05</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179211</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179212</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179213</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179214</td>
<td>0.03</td>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179215</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.03</td>
<td>0.06</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179216</td>
<td>0.04</td>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179217</td>
<td>0.11</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
<td>0.06</td>
<td>0.06</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179218</td>
<td>0.05</td>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179219</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179220</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>0.04</td>
<td>0.05</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179221</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.02</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179222</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179223</td>
<td>nd</td>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179224</td>
<td>nd</td>
<td>bdl</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>nd</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179225</td>
<td>bdl</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179226</td>
<td>0.08</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
<td>0.08</td>
<td>0.11</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179227</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179228</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179229</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>method blank</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>method blank</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>method blank</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>method blank</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>method blank</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td></td>
<td></td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.11</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.56</td>
<td>0.34</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Standard Dev.</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Mean</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

No mdl is available for summed combinations of analytes. In summed columns (e.g., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.
<table>
<thead>
<tr>
<th>SAMPLE NAME</th>
<th>TCE, ug</th>
<th>OCT, ug</th>
<th>PCE, ug</th>
<th>14DCB, ug</th>
<th>CHCl3, ug</th>
<th>CCI4, ug</th>
<th>CIBENZ, ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDL=</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>179087</td>
<td>0.78</td>
<td>nd</td>
<td>0.03</td>
<td>0.02</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179088</td>
<td>0.22</td>
<td>nd</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179089</td>
<td>0.21</td>
<td>nd</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179090</td>
<td>0.13</td>
<td>nd</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179091</td>
<td>0.09</td>
<td>0.20</td>
<td>0.04</td>
<td>bdl</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179092</td>
<td>nd</td>
<td>nd</td>
<td>0.23</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179093</td>
<td>nd</td>
<td>nd</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179094</td>
<td>0.09</td>
<td>nd</td>
<td>0.33</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179095</td>
<td>nd</td>
<td>nd</td>
<td>0.63</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179096</td>
<td>0.05</td>
<td>nd</td>
<td>0.41</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179097</td>
<td>bdl</td>
<td>nd</td>
<td>0.56</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179098</td>
<td>bdl</td>
<td>nd</td>
<td>0.24</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179099</td>
<td>0.04</td>
<td>nd</td>
<td>0.40</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179100</td>
<td>0.12</td>
<td>nd</td>
<td>0.22</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179101</td>
<td>0.04</td>
<td>nd</td>
<td>0.14</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179102</td>
<td>nd</td>
<td>nd</td>
<td>0.05</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179103</td>
<td>nd</td>
<td>0.18</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179104</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179105</td>
<td>nd</td>
<td>nd</td>
<td>0.01</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179106</td>
<td>nd</td>
<td>nd</td>
<td>0.05</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179107</td>
<td>nd</td>
<td>nd</td>
<td>0.06</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179108</td>
<td>nd</td>
<td>nd</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179109</td>
<td>nd</td>
<td>nd</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179110</td>
<td>nd</td>
<td>nd</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179111</td>
<td>nd</td>
<td>nd</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179112</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179113</td>
<td>0.14</td>
<td>nd</td>
<td>0.03</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179114</td>
<td>2.52</td>
<td>0.07</td>
<td>0.09</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179115</td>
<td>0.30</td>
<td>nd</td>
<td>0.06</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179116</td>
<td>0.43</td>
<td>nd</td>
<td>0.02</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179117</td>
<td>2.71</td>
<td>nd</td>
<td>0.10</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179118</td>
<td>1.74</td>
<td>nd</td>
<td>0.33</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179119</td>
<td>2.50</td>
<td>nd</td>
<td>0.88</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179120</td>
<td>7.82</td>
<td>0.13</td>
<td>0.39</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179121</td>
<td>11.48</td>
<td>nd</td>
<td>0.31</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179122</td>
<td>4.17</td>
<td>nd</td>
<td>0.06</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179123</td>
<td>14.22</td>
<td>nd</td>
<td>0.24</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>179124</td>
<td>bdl</td>
<td>0.09</td>
<td>1.72</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.
ANNEX C
DSS Site 1010
Soil Sample Data Validation Results
RECORDS CENTER CODE: ER/1295/DSS/DAT

SMO ANALYTICAL DATA ROUTING FORM

PROJECT NAME: DSS Soil Sampling
SNL TASK LEADER: Collins
SMO PROJECT LEAD: Herrera

PROJECT/TASK: 7223 02.03.02
ORG/MS/CF#: 6133/1069/CF032-02
SAMPLE SHIP DATE: 9/5/2002

<table>
<thead>
<tr>
<th>ARCCO</th>
<th>LAB</th>
<th>LAB ID</th>
<th>PRELIM DATE</th>
<th>FINAL DATE</th>
<th>EDD</th>
<th>ON Q</th>
<th>BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>605669</td>
<td>GEL</td>
<td></td>
<td></td>
<td>10/5/2002</td>
<td>X</td>
<td>X</td>
<td>JAC</td>
</tr>
</tbody>
</table>

CORRECTIONS REQUESTED/RECEIVED:
PROBLEM #:
REVIEW COMPLETED BY/DATE:
FINAL TRANSMITTED TO/DATE:
SENT TO VALIDATION BY/DATE:
RUSH VALIDATION REQUIRED EST. TAT:
VALIDATION COMPLETED BY/DATE:
TO ERDMS OR RECORDS CENTER BY/DATE:

COMMENTS:

__
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>All VOC/27 compounds</th>
<th>PCB</th>
<th>HE</th>
<th>Metals</th>
<th>7440-38-2 (arsenic)</th>
<th>7440-47-3 (chromium)</th>
<th>7782-46-2 (selenium)</th>
<th>7440-39-3 (barium)</th>
<th>General Chemistry</th>
<th>18540-29-9 (hexavalent chromium)</th>
<th>Radiochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>059797-002 6536/1010-EB</td>
<td></td>
</tr>
<tr>
<td>059797-006 6536/1010-EB</td>
<td></td>
</tr>
<tr>
<td>059797-007 6536/1010-EB</td>
<td></td>
</tr>
<tr>
<td>059799-002 6531/1108-SP1-BH1-10-S</td>
<td></td>
</tr>
<tr>
<td>059805-002 6531/1108-SP1-BH1-15-S</td>
<td></td>
</tr>
<tr>
<td>059806-002 6531/1108-SP2-BH1-10-S</td>
<td></td>
</tr>
<tr>
<td>059807-002 6531/1108-SP2-BH1-15-S</td>
<td></td>
</tr>
<tr>
<td>059808-002 6538/1010-SP1-BH1-23-S</td>
<td></td>
</tr>
<tr>
<td>059809-002 6538/1010-SP1-BH1-26-S</td>
<td></td>
</tr>
<tr>
<td>059810-002 6538/1010-SP2-BH1-15-S</td>
<td></td>
</tr>
<tr>
<td>059811-002 6538/1010-SP2-BH1-16-S</td>
<td></td>
</tr>
</tbody>
</table>

All QC acceptance criteria were met. No data will be qualified.

All QC acceptance criteria were met. No data will be qualified.

All QC acceptance criteria were met. No data will be qualified.

Validated By: [Signature]

Date: 10/31/02
MEMORANDUM

DATE: October 31, 2002

TO: File

FROM: Linda Thai

SUBJECT: Radiochemical Data Review and Validation - SNL
Site: DSS soil sampling
ARCO 605689
GEL SDG # 66610 and 66613 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03.

Summary

All samples were prepared and analyzed with approved procedures using method EPA 900.0 (Gross Alpha/Beta). No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

All Analyses: All samples were analyzed within the prescribed holding times and properly preserved.

Calibration

All Analyses: The case narrative stated the instruments used were properly calibrated.

Blanks

No target analytes were detected in the method blank at concentrations > the associated MDAs.

Matrix Spike (MS) Analysis

The MS/MSD analyses met all QC acceptance criteria except as follows:
The MS/MSD was performed on a sample of similar matrix from another SNL SDG. No data will be qualified as a result.

Laboratory Control Sample (LCS) Analysis

The LCS analyses met all QC acceptance criteria.

Replicates

The replicate analyses met all QC acceptance criteria except as follows:

The replicate analysis was performed on a sample of similar matrix from another SNL SDG. No data will be qualified as a result.

Tracer/Carrier Recoveries

No tracer/carrier required.

Negative Bias

All sample results met negative bias QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. No samples were diluted.

Other QC

No field duplicate, field blank or equipment blank was submitted on the ARCCO.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.
MEMORANDUM

DATE: 10/30/02
TO: File
FROM: Linda Thai
SUBJECT: Organic Data Review and Validation - SNL
Site: DSS soil sampling
ARCCOC # 605669 GEL SDG # 66610 and 66613
Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 8260A/B (VOC), 8270C (SVOC), 8082 (PCBs) and 8330 (HEs). Problems were identified with the data package that resulted in the qualification of data.

SVOC - Batch 199845 water
The MS/MSD was run on a sample from a different SNL SDG and failed %R for all acid compounds including the acid surrogates. Sample 66613-004 passed all surrogate %R and therefore, using professional judgment, the MS/MSD information will not be used to assess the precision for the batch. As no replicate was run on sample 66613-004 there is no means to assess precision and all compounds will be qualified "P2".

PCB
Sample 66610-015 had aroclor 1242 and 1254 values > DL but < RL. The RPDs (30/58%) between the primary and confirmation column were > QC acceptance criteria (25%). Sample 66610-016 had an aroclor 1254 value > DL but < RL. The RPD (44%) between the primary and confirmation column was > QC acceptance criteria (25%). The highest values are reported and will be qualified "J".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

All Analysis: The samples were properly preserved and analyzed within the method prescribed holding time.
Calibration

All Analysis: All initial and continuing calibration acceptance criteria were met except as follows:

SVOC
The CCV preceding the soil samples had a %D > 20% but < 40% with a negative bias for 2,4-dimethylphenol (20.5%) and bis(2-chloroethyl)ether (37%). The CCV preceding the water sample had a %D > 20% but < 40% with a negative bias for hexachlorocyclopentadiene (22%) and bis(2-chloroethyl)ether (37%). All associated sample results were non-detect and no data will be qualified.

Blanks

All Analysis: All method blank, equipment blank and trip blank acceptance criteria were met except as follows:

HE – waters
Tetryl was observed in the MB associated with sample 66613-006 (equipment blank) at a value > DL. The sample result was non-detect and no data will be qualified.

Surrogates

All Analysis: All surrogate acceptance criteria were met.

Internal Standards (ISs)

All Analysis: All internal standard acceptance criteria were met.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

All Analysis: All MS/MSD acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC - soils and water
The PS/PSD was run on a sample of similar matrix from another SNL SDG. No data will be qualified as a result.

SVOC - soils
Several compounds (see DV worksheet) had %R < QC acceptance criteria (75 – 125%). 4-Nitrophenol had an RPD (37%) slightly higher that QC acceptance criteria (35%). Using professional judgment, no data will be qualified.

PCB - water
It should be noted that the sample used for the MS/MSD was of similar matrix from SNL SDG 66619. No data will be qualified as a result.

HE – water
No MS/MSD was extracted with this batch. A LCS/LCSD was extracted and passes all QC acceptance criteria for accuracy and precision.

Laboratory Control Samples (LCS/LCSD) Analysis

All Analysis: The LCS/LCSD acceptance criteria were met except as follows:
VOC – Soils and Waters
It should be noted that no compound was associated with internal standard 1,4-dichlorobenzene-d4. No data will be qualified as a result.

SVOC
It should be noted that no compound was associated with internal standard perylene-d12. No data will be qualified as a result.

Detection Limits/Dilutions

All Analysis: All detection limits were properly reported. Samples were not diluted.

Confirmation Analyses

VOC and SVOC: No confirmation analyses required.

PCB: All confirmation acceptance criteria were met except as mentioned above in the summary section.

HE: The sample results were non-detect and therefore no confirmation analysis was required.

Other QC

VOC: Trip blanks and an equipment blank was submitted on the ARCCOC. No field duplicate was submitted on the ARCCOC. It should be noted that vinyl acetate is on the TAL for the soils batch, but not for the water batch.

SVOC, PCB and HE: An equipment blank was submitted on the ARCCOC. No field blank or field duplicate was submitted on the ARCCOC.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.
MEMORANDUM

DATE: 10/31/02
TO: File
FROM: Linda Thai
SUBJECT: Inorganic Data Review and Validation - SNL
Site: DSS soil sampling
ARCCO # 605669 GEL SDG # 66610 and 66613
Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 6010 (ICP-AES metals), SW-846 7471A (Hg), SW-846 9012A (total CN) and SW-846 7196A (hexavalent chromium).

Problems were identified with the data package that resulted in the qualification of data.

ICP-AES - Metals - soils
Selenium was detected in the initial calibration blank (ICB) and the equipment blank (EB) at a value > DL but < RL. Sample 66610-011, -012 and -014 had selenium values > DL but < 5X the blank values and will be qualified "J, B2, B3".

Arsenic had a value > RL but < 5X the RL. The difference between the sample and its duplicate was > RL. All associated sample results > DL will be qualified "J".

ICP-AES - Metals - water
Barium was detected in the MB at a value > DL but < RL. Sample 66613-009 (EB) had a barium value > DL but < 5X the MB value and will be qualified "J, B".

Chromium was detected in the MB and CCB at values > DL but < RL. Sample 66613-009 (EB) had a chromium value > DL but < 5X the blank values and will be qualified "J, B, B3".

Silver was detected in the ICB at a negative value with an absolute value > DL but < RL. Sample 66613-009 (EB) was non-detect for silver and will be qualified "UJ, B3".
Selenium was detected in the CCB at a value > DL but < RL. Sample 66613-009 (EB) had a selenium value > DL but < 5X the CCB value and will be qualified "J, B3".

Hexavalent Chromium – water
Sample 66613-008 (EB) was received and analyzed after the method specified hold time had elapsed. The sample result was non-detect and will be qualified "UJ, HT".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

All Analyses: The samples were analyzed within the prescribed holding time and property preserved except as mentioned above in the summary section.

Calibration

All Analyses: The initial and continuing calibration data met QC acceptance criteria.

Blanks

All Analyses: All blank criteria were met except as mentioned above in the summary section and as follows:

ICP-AES – Metals - soils
Selenium was detected in the initial calibration blank (ICB) and the equipment blank (EB) at a value > DL but < RL. Sample 66610-009, -010, -013, -015 and -016 were non-detect for selenium and will not be qualified.

Barium was detected in the EB, and chromium in the EB and CCB at values >DL but <RL. All associated sample results were > 5X the blank values and will not be qualified.

ICP-AES – Metals – water
Silver and lead were detected in the CCB and MB at a value > DL but < RL. Sample 66613-009 (EB) was non-detect and will not be qualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analyses

All Analyses: The LCS met QC acceptance criteria. No LCSD was performed. No data will be qualified as a result.

Matrix Spike (MS) Analysis

All Analyses: The MS met QC acceptance criteria except as follows:

ICP-AES – water
The sample used for the MS was of similar matrix from SNL SDG 66619. No data will be qualified as a result.
Hg - water
The sample used for the MS was of similar matrix from SNL SDG 66457. No data will be qualified as a result.

Total Cyanide – water
The sample used for the MS was of similar matrix from SNL SDG 66619. No data will be qualified as a result.

Replicate Analysis
All Analyses: The replicate analysis met QC acceptance criteria except as mentioned above in the summary section and as follows:

ICP-AES – water
The sample used for the replicate was of similar matrix from SNL SDG 66619. No data will be qualified as a result.

Hg - water
The sample used for the replicate was of similar matrix from SNL SDG 66457. No data will be qualified as a result.

Total Cyanide – water
The sample used for the replicate was of similar matrix from SNL SDG 66619. No data will be qualified as a result.

ICP Interference Check Sample (ICS)
ICP-AES: The ICS-AB met QC acceptance criteria.

All Other Analyses: No ICS required.

ICP Serial Dilution
ICP-AES: The serial dilutions met QC acceptance criteria except as follows:

ICP-AES – water
The sample used for the serial dilution was of similar matrix from SNL SDG 66619. No data will be qualified as a result.

All Other Analyses: No serial dilutions required.

Detection Limits/Dilutions
All Analyses: All detection limits were properly reported.

ICP-AES soils: All samples were diluted 2X.

All Other Analyses: No dilutions were performed.
Other QC

All Analyses: An equipment blank was submitted on the ARCCOC. No field duplicate or field blank was submitted on the ARCCOC.

It should be noted that the ARCCOC requests that the samples for metals be run by SW-846 6020 (ICP-MS).

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.
<table>
<thead>
<tr>
<th>QC Element</th>
<th>Organics</th>
<th>Analysis</th>
<th>Inorganics</th>
<th>RAD</th>
<th>Other Chroma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>SVOC</td>
<td>Pesticide/PCB</td>
<td>HPLC (HE)</td>
<td>ICP/AES</td>
</tr>
<tr>
<td>1. Holding Times/Preservation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2. Calibrations</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3. Method Blanks</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4. MS/MSD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5. Laboratory Control Samples</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6. Replicates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7. Surrogates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8. Internal Standards</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9. TCL Compound Identification</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10. ICP Interference Check Sample</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11. ICP Serial Dilution</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12. Carrier/Chemical Tracer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Recoveries</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13. Other QC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

J = Estimated, U = Not Detected, UJ = Not Detected, Estimated, R = Unusable, Check (✓) = Acceptable, Shaded Cells = Not Applicable (also "NA"), NP = Not Provided, Other: * Confirmation

Reviewed By: [Signature]

Date: 10-31-02

B-12
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Analytical Method</th>
<th>Holding Time Criteria</th>
<th>Days Holding Time was Exceeded</th>
<th>Preservation Criteria</th>
<th>Preservation Deficiency</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>66613 - 008</td>
<td>SQ - 846 7196A</td>
<td>24 hours 7 hours 55 min</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>UJ, HT</td>
</tr>
</tbody>
</table>

Reviewed By: **[Signature]**
Date: **10-31-0**
<table>
<thead>
<tr>
<th>IS</th>
<th>CAS #</th>
<th>Name</th>
<th>TIC CL</th>
<th>Min. RF</th>
<th>Intercept</th>
<th>Calib. RF</th>
<th>Calib. RSD (%)</th>
<th>CCV %D</th>
<th>Method Blks</th>
<th>LCS</th>
<th>LCSRPD</th>
<th>MS</th>
<th>MSD</th>
<th>MS RPd</th>
<th>Fld Dep. RPd</th>
<th>Equip. Blanks</th>
<th>Trip Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71-55-6</td>
<td>1,1,1-trichloroethane</td>
<td>0.10</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>79-34-5</td>
<td>1,1,2,2-tetrachloroethane</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>79-00-5</td>
<td>1,1,2-trichloroethane</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75-34-3</td>
<td>1,1-dichloroethane</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75-35-4</td>
<td>1,1-dichloroethane</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>107-06-2</td>
<td>1,2-dichloroethane</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>540-59-9</td>
<td>1,2-dichloroethane (total)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>78-87-5</td>
<td>1,2-dichloroethylene</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>78-93-3</td>
<td>2-butanone (MEK)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>110-75-8</td>
<td>2-chloroethyl vinyl ether</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>591-78-6</td>
<td>2-butanone (MBK)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>108-10-1</td>
<td>4-methyl-2-pentanone</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>67-74-1</td>
<td>acetone (10x dil)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>71-43-2</td>
<td>benzene</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>175-27-4</td>
<td>bromodichloromethane</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75-25-2</td>
<td>bromoform</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>74-83-9</td>
<td>bromoethane</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75-15-0</td>
<td>carbon disulfide</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>56-23-3</td>
<td>carbon tetrachloride</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>108-93-7</td>
<td>chlorobenzene</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75-00-3</td>
<td>chloroform</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>67-66-3</td>
<td>chloroform</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>74-87-3</td>
<td>chloromethane</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>106-1-05</td>
<td>cis-1,3-dichloropropene</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>124-48-1</td>
<td>dibromochloromethane</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100-41-4</td>
<td>ethylbenzene</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75-09-2</td>
<td>methylene chloride (10x dil)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>108-42-5</td>
<td>styrene</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>127-12-4</td>
<td>tetrachloroethane</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>108-83-3</td>
<td>toluene (10x dil)</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10061-02-6</td>
<td>trans-1,3-dichloropropene</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75-01-6</td>
<td>trichloroethane</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>75-01-4</td>
<td>vinyl chloride</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1330-20-7</td>
<td>xylene (total)</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

Comments: Vinyl acryl (soils only)

Notes: Shaded rows are RCRA compounds.

Reviewed By: [signature] Date: 10.09.02
Surrogate Recovery and Internal Standard Outliers (SW 846 Method 8260)

<table>
<thead>
<tr>
<th>Sample</th>
<th>SMC 1</th>
<th>SMC 2</th>
<th>SMC 3</th>
<th>IS 1 Area</th>
<th>IS 1 RT</th>
<th>IS 2 area</th>
<th>IS 2 RT</th>
<th>IS 3 area</th>
<th>IS RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC 1: 4-Bromofluorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMC 2: Dibromofluoromethane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMC 3: Toluene-d8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 1: Fluorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 2: Chlorobenzene-d5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS 3: 1,4-Dichlorobenzene-d4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: LoJ& Pa/ID 661654 - 001 Swx 504

B-19
<table>
<thead>
<tr>
<th>IS</th>
<th>BNA</th>
<th>CAS #</th>
<th>NAME</th>
<th>Calib. RF</th>
<th>Calib. RSD/ R²</th>
<th>CCV %D</th>
<th>Method Blanks</th>
<th>LCS</th>
<th>LCS #</th>
<th>LCS RPD</th>
<th>MS</th>
<th>MSD</th>
<th>MS RPD</th>
<th>Field Dup. RPD</th>
<th>66613</th>
<th>Equip. Blanks</th>
<th>Field Blanks</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BN</td>
<td>120-82-1</td>
<td>1,2,4-Trimethylbenzene</td>
<td>0.20</td>
<td><20%</td>
<td>20%</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BN</td>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
<td>0.40</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BN</td>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
<td>0.60</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BN</td>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
<td>0.50</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>95-93-4</td>
<td>2,4,5-Trichlorophenol</td>
<td>0.20</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>88-06-2</td>
<td>2,4,6-Trichlorophenol</td>
<td>0.20</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>120-83-2</td>
<td>2,4-Dichlorophenol</td>
<td>0.20</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>105-67-9</td>
<td>2,4-Dimethylphenol</td>
<td>0.20</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>51-28-5</td>
<td>2,4-Dinitrophenol</td>
<td>0.01</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN</td>
<td>121-14-2</td>
<td>2,4-Dinitrotoluene</td>
<td>0.20</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN</td>
<td>606-20-2</td>
<td>2,6-Dinitrotoluene</td>
<td>0.20</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN</td>
<td>91-58-7</td>
<td>2-Chloronaphthalene</td>
<td>0.80</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>95-57-8</td>
<td>2-Chlorobenzidine</td>
<td>0.80</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN</td>
<td>91-57-6</td>
<td>2-Methylnaphthalene</td>
<td>0.40</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>95-48-7</td>
<td>2-Methylphenol (o-cresol)</td>
<td>0.70</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN</td>
<td>88-74-4</td>
<td>2-Nitroaniline</td>
<td>0.01</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>88-75-5</td>
<td>2-Nitroaniline</td>
<td>0.10</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BN</td>
<td>91-94-1</td>
<td>3,3'-Dichlorobenzidine</td>
<td>0.01</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN</td>
<td>99-09-2</td>
<td>3-Nitroaniline</td>
<td>0.01</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>534-52-1</td>
<td>4,6-Dinitro-2-methylphenol</td>
<td>0.01</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BN</td>
<td>101-55-3</td>
<td>4-Bromophenyl-phenylether</td>
<td>0.10</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BN</td>
<td>7005-72-3</td>
<td>4-Chlorophenyl-phenylether</td>
<td>0.00</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>59-30-7</td>
<td>4-Chloro-3-methylphenol</td>
<td>0.20</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN</td>
<td>106-47-8</td>
<td>4-Chloroaniline</td>
<td>0.01</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>106-44-5</td>
<td>4-Methylphenol (p-cresol)</td>
<td>0.60</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>

Comments: m, p- cresol ✔️

Notes: Shaded rows are RCRA compounds.

Reviewed By: [Signature] Date: 10/29/03
<table>
<thead>
<tr>
<th>BNA</th>
<th>CAS #</th>
<th>NAME</th>
<th>TCCL</th>
<th>Min. RF</th>
<th>Intercept</th>
<th>Calib. RF</th>
<th>Calib. RSD/ R²</th>
<th>CCV %D</th>
<th>Method Blanks</th>
<th>LCS</th>
<th>LCS RPD</th>
<th>MS</th>
<th>MSD</th>
<th>MS RPD</th>
<th>Field Dup. RPD</th>
<th>Equip. Blanks</th>
<th>Field Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BN100-01-6</td>
<td>4-Nitroaniline</td>
<td></td>
<td>0.01</td>
<td></td>
<td>>0.5</td>
<td><20% / 0.99</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(30 - 24%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A100-02-7</td>
<td>4-Nitrophenol</td>
<td></td>
<td>0.01</td>
<td></td>
<td>(4.25 ± 1.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN208-05-9</td>
<td>Acenaphthene</td>
<td></td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN208-05-9</td>
<td>Acenaphthene</td>
<td></td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>120-12-7</td>
<td>Anthracene</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>56-55-3</td>
<td>Benzene (α)anthracene</td>
<td></td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BN205-99-2</td>
<td>Benzene (β)anthracene</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BN205-99-2</td>
<td>Benzene (β)anthracene</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BN191-24-2</td>
<td>Benzene (α)pyrene</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BN207-06-9</td>
<td>Benzene (β)anthracene</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN111-91-1</td>
<td>bis(2-Chloroethoxy)methane</td>
<td></td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN111-91-1</td>
<td>bis(2-Chloroethoxy)methane</td>
<td></td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN111-44-4</td>
<td>bis(2-Chloroethoxy)ether</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN108-60-1</td>
<td>bis(2-Chloroethoxy)ether</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN117-41-7</td>
<td>bis(2-Ethylhexyl)phthalate</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN117-41-7</td>
<td>bis(2-Ethylhexyl)phthalate</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN117-41-7</td>
<td>bis(2-Ethylhexyl)phthalate</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN117-41-7</td>
<td>bis(2-Ethylhexyl)phthalate</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BN86-74-3</td>
<td>Carbazole</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BN86-74-3</td>
<td>Carbazole</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BN218-01-9</td>
<td>Chrysene</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BN55-30-3</td>
<td>Dibenz[a,h]anthracene</td>
<td></td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN132-64-9</td>
<td>Dibenzofuran</td>
<td></td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BN84-66-2</td>
<td>Diethyl phthalate</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN131-11-3</td>
<td>Dimethyl phthalate</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN84-74-2</td>
<td>Di-o-butyphthalate</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BN17-84-0</td>
<td>Di-o-cetyl phthalate</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BN206-44-0</td>
<td>Fluoranthene</td>
<td></td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN86-73-7</td>
<td>Fluorene</td>
<td></td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BN118-74-1</td>
<td>Hexachlorobenzene</td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN87-68-3</td>
<td>Hexachlorobutadiene</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BN77-47-4</td>
<td>Hexachlorocyclopentadiene</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BN67-72-1</td>
<td>Hexachloroethane</td>
<td></td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

Comments: B-21
Laboratory Report

Sample Information

<table>
<thead>
<tr>
<th>IS</th>
<th>BNA</th>
<th>CAS #</th>
<th>NAME</th>
<th>TCL</th>
<th>Min. RF</th>
<th>Intercept</th>
<th>Calib. RF</th>
<th>Calib. RPD</th>
<th>CCV %D</th>
<th>Method Blanks</th>
<th>LCS</th>
<th>LCS B</th>
<th>LCS RPD</th>
<th>MS</th>
<th>MSD</th>
<th>MS RPD</th>
<th>Field Dup. RPD</th>
<th>Equip. Blanks</th>
<th>Field Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>BN</td>
<td>193-39-5</td>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>0.50</td>
<td></td>
<td></td>
<td>>05</td>
<td><10%</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN</td>
<td>78-59-1</td>
<td>Naphtalene</td>
<td></td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN</td>
<td>91-20-3</td>
<td>Naphtalene</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BN</td>
<td>98-95-3</td>
<td>Naphtalene</td>
<td></td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BN</td>
<td>86-30-6</td>
<td>1-Nitrosodiphenyleneamine (1)</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BN</td>
<td>621-64-7</td>
<td>N-Nitroso-di-propylamine</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>87-86-5</td>
<td>Pentachlorophenol</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BN</td>
<td>85-01-8</td>
<td>Phenanthrene</td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>108-85-2</td>
<td>Phenol</td>
<td></td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BN</td>
<td>129-00-0</td>
<td>Pyrene</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diphenylamine</td>
<td></td>
</tr>
</tbody>
</table>

Surrogate Recovery Outliers

Comments:
- Pyridine on QC Summary not on TR not validated.
- MS/MS 0% R < 25% are all 7 lab LCS criteria - no Y.
- N Nitrophenol RPD 'NG' 41 SA.
- NO Q (prof judgment).

Internal Standard Outliers

Sample
- IS 1: 1,4-Dichlorobenzene-d4 (BN)
- IS 2: Naphthalene-d8 (BN)
- IS 3: Acenaphthene-d10 (BN)
- IS 4: Phenanthrene-d10 (BN)
- IS 5: Chloroene-d12 (BN)
- IS 6: Pyrene-d12 (BN)

Materials Used:
- H2O from 665/919 200 504.
- All and compounds failed QC.
- Sample analyzed.

Notes:
- All of PO.
<table>
<thead>
<tr>
<th>CAS #</th>
<th>Name</th>
<th>TLC</th>
<th>Calib RBD / %</th>
<th>CCV %</th>
<th>Method Blanks</th>
<th>LCB</th>
<th>LCB RPDR</th>
<th>RPD</th>
<th>CB</th>
<th>M3D</th>
<th>Field Blanks</th>
<th>Equip Blanks</th>
<th>Field Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>12674-11-2</td>
<td>Aroclor-1016</td>
<td>NA</td>
<td>✔️</td>
</tr>
<tr>
<td>11104-28-2</td>
<td>Aroclor-1221</td>
<td>✔️</td>
</tr>
<tr>
<td>11141-16-3</td>
<td>Aroclor-1233</td>
<td>✔️</td>
</tr>
<tr>
<td>53469-21-9</td>
<td>Aroclor-1242</td>
<td>✔️</td>
</tr>
<tr>
<td>12872-29-6</td>
<td>Aroclor-1248</td>
<td>✔️</td>
</tr>
<tr>
<td>11097-69-1</td>
<td>Aroclor-1254</td>
<td>✔️</td>
</tr>
<tr>
<td>11096-82-3</td>
<td>Aroclor-1260</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Sample	**SMC % REC**	**SMC RT**	**Sample**	**SMC % REC**	**SMC RT**
66610 - 010					
66610 - 013					
66610 - 016					

Confirmation

<table>
<thead>
<tr>
<th>Sample</th>
<th>CAS #</th>
<th>RPD > 25%</th>
<th>Sample</th>
<th>CAS #</th>
<th>RPD > 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>66610 - 010</td>
<td>124.4%</td>
<td>25.4%</td>
<td>66610 - 013</td>
<td>187.4%</td>
<td>38.9%</td>
</tr>
<tr>
<td>66610 - 016</td>
<td>67.4%</td>
<td>63.4%</td>
<td>66610 - 013</td>
<td>104.4%</td>
<td>63.4%</td>
</tr>
</tbody>
</table>

Reviewed By: [Signature] Date: 10.30
High Explosives (SW 846 Method 8330)

Site/Project: JSW SOIL Sampling/COC #: 605649
Laboratory Sample IDs: 64E10 009 44E10 016

Laboratory: QRA
Laboratory Report #: 64E10
Methods: SW - 846, 8330

of Samples: 8
Matrix: Soil & H2O

CAS #
NAME
Intercept
Curve R²
CCV %
Method Blanks
LCS
LCS RPD
MS
MS RPD
Field Blanks
Field Blanks

<table>
<thead>
<tr>
<th>CAS #</th>
<th>NAME</th>
<th>Intercept</th>
<th>Curve R²</th>
<th>CCV %</th>
<th>Method Blanks</th>
<th>LCS</th>
<th>LCS RPD</th>
<th>MS</th>
<th>MS RPD</th>
<th>Field Blanks</th>
<th>Field Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2691-41-0</td>
<td>HMX</td>
<td>NA</td>
<td>0.998</td>
<td>20%</td>
<td>U</td>
<td>2</td>
<td>20%</td>
<td>1</td>
<td>20%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>121-82-4</td>
<td>RDX</td>
<td></td>
</tr>
<tr>
<td>99-35-49</td>
<td>1,3,5-Trinitrobenzene</td>
<td></td>
</tr>
<tr>
<td>99-65-0</td>
<td>1,3-dinitrobenzene</td>
<td></td>
</tr>
<tr>
<td>98-95-3</td>
<td>Nitrobenzene</td>
<td></td>
</tr>
<tr>
<td>479-45-8</td>
<td>Tetryl</td>
<td></td>
</tr>
<tr>
<td>118-96-7</td>
<td>2,4,6-trinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>35572-78-2</td>
<td>2-amino-4,6-dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>19406-51-0</td>
<td>4-amino-2,6-dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>121-14-2</td>
<td>2,4-dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>606-20-2</td>
<td>2,6-dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>88-72-2</td>
<td>2-nitrotoluene</td>
<td></td>
</tr>
<tr>
<td>99-99-0</td>
<td>4-nitrotoluene</td>
<td></td>
</tr>
<tr>
<td>99-08-1</td>
<td>3-nitrotoluene</td>
<td></td>
</tr>
<tr>
<td>78-11-5</td>
<td>PETN</td>
<td></td>
</tr>
</tbody>
</table>

Sample
SMC %REC
SMC RT
Sample
SMC %REC
SMC RT

<table>
<thead>
<tr>
<th>Sample</th>
<th>SMC %REC</th>
<th>SMC RT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Confirmation

<table>
<thead>
<tr>
<th>Sample</th>
<th>CAS #</th>
<th>RPD > 25%</th>
<th>Sample</th>
<th>CAS #</th>
<th>RPD > 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

- H2O batch: No MS/MS ACS/UCSO used to assess precision. Very low observed on primary fill, MS not long at 740%.

Solid-to-aqueous conversion:

\[\text{mg/kg} = \frac{\mu g/g \times (\text{sample mass (g) / sample vol. (mL)}) \times (1000 \text{ mL} / 1 \text{ ltr})}{\text{Dilution Factor} = \mu g / l} \]

Reviewed By: [Signature]
Date: 10/31/00

B-17
Inorganic Metals

Site/Project: DNJ Soil Sampling AR/COC #: 605 669
Laboratory: GKA
Methods: SW-8 NG W714 (Hg) 6010 (ICP-AES)
of Samples: 8
Matrix: Soil @ H2O

Laboratory Sample IDs: 66610 - 009 Hg - 016

<table>
<thead>
<tr>
<th>CAS #/ Analyte</th>
<th>u/g</th>
<th>u/g</th>
<th>QC Element</th>
<th>u/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>7429-90-5 Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7440-39-3 Ba</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ :25</td>
<td>NA</td>
</tr>
<tr>
<td>7440-41-7 Be</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7444-34-9 Ca</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-70-2 Co</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7444-47-3 Cr</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-43-4 Co</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-50-6 Cu</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7439-85-6 Fe</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7439-95-5 Mg</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-02-0 Ni</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-09-7 K</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7444-23-4 Ag</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7444-23-5 Na</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-62-2 V</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7444-66-6 Zn</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7439-95-1 Pb</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7782-49-3 Sr</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-38-3 As</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-36-0 Sb</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7440-28-0 Ti</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>7439-97-6 Hg</td>
<td>✔ ✔</td>
<td>✔ ✔</td>
<td>✔ ✔ ✔</td>
<td>NA</td>
</tr>
<tr>
<td>Cyanide CN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Shaded rows are RCRA metals. Solids-to-solvent conversions: mg/kg = μg/g × (μg/g) × (sample mass (g) / sample vol. (ml)) × (1000 ml / 1 liter) / Dilution Factor = μg/l

Comments:

1. Soil dup R3 > R2, NO = UJ, D = J.

Reviewed By:

Date: 10.31.02

B-14
Gene Chemistry

Site/Project: DW Soil Sampling AR/COC #: 60S 669
Laboratory: FDX Laboratory Report #: 666/0
Methods: SW-BW6 9012A (707) 7FA (0.6)
of Samples: 8 7 0 Matrix: Soil 120

Laboratory Sample IDs: 666/0 - 009 H2O - 010
666/3 - 007 (707-08) - 008 (0.6-8)
200183 (707-08) 199723 (0.6-8)
Batch #: 200179 (707 soil) 200893 (0.6 soil)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Cyanide</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NO</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexavalent Chromium</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2O</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Cyanide</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexavalent Chromium</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:
Soil 0.6 FB removed 2/3 or NaCl
- Dup & MS 66459 SWX 504
666/0 - 011

Reviewed By: Ralph Date: 10/31/02

B-16
Radiochemistry

Site/Project: DS SOIL SAMPLING
AR/COC #: 6056659
Laboratory: GKA
Laboratory Sample IDs: 66610 - 009 THRU - 016 SOIL
Methods: EPA 900.0
of Samples: 8 & 1
Matrix: SOIL & H2O
Laboratory Report #: 66610 66613
Batch #: 200122 (SOIL) 201295 (ES)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Method</th>
<th>Typical Tracer</th>
<th>Typical Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso-U</td>
<td>Alpha spec.</td>
<td>U-232</td>
<td>NA</td>
</tr>
<tr>
<td>Iso-Pu</td>
<td>Alpha spec.</td>
<td>Pu-242</td>
<td>NA</td>
</tr>
<tr>
<td>Iso-Th</td>
<td>Alpha spec.</td>
<td>Th-229</td>
<td>NA</td>
</tr>
<tr>
<td>Am-241</td>
<td>Alpha spec.</td>
<td>Am-242</td>
<td>NA</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Beta</td>
<td>Y ingrowth</td>
<td>NA</td>
</tr>
<tr>
<td>Ni-63</td>
<td>Beta</td>
<td>NA</td>
<td>NI by ICP</td>
</tr>
<tr>
<td>Ra-226</td>
<td>Deamination</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ra-226</td>
<td>Alpha spec.</td>
<td>Ba-133 or Ra-225</td>
<td>NA</td>
</tr>
<tr>
<td>Ra-228</td>
<td>Gamma spec.</td>
<td>Ba-133</td>
<td>NA</td>
</tr>
</tbody>
</table>

Gamma spec. LCS contains: Am-241, Cs-137, and Co-60

QC Element

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>U</td>
<td>20%</td>
<td>25%</td>
<td><1.0</td>
<td>U</td>
<td><1.0</td>
<td>U</td>
<td>50-105</td>
<td>H2O</td>
<td>50-105</td>
<td>50-105</td>
<td>H2O</td>
<td>50-105</td>
</tr>
</tbody>
</table>

Comments: SOIL DUP MS/MSO 67079 596 595 SNY SAS 504
H2O DUP MS/MSO 67079 SNY SAS 504

Reviewed By: [Signature]
Date: 10.31.02
Continuing Calibration Compounds

Injection Date: 09-SEP-2002 13:32
Init. Cal. Date(s): 06-SEP-2002 07-SEP-2002
Init. Cal. Times: 14:33 16:27

Lab Sample ID: UBNO206619-01.8 Quant Type: ISTD
Method: /chem/MSD8.i/o90902.b/MSD8-8270-090702a.m

Calibration Results

<table>
<thead>
<tr>
<th>Compound</th>
<th>EXP / AMOUNT</th>
<th>EXP40</th>
<th>CAL</th>
<th>EXP / EXP40</th>
<th>ID / VL</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 3-Fluorobenzene</td>
<td>0.98282</td>
<td>0.92277</td>
<td>0.92377</td>
<td>0.000</td>
<td>-5.91241</td>
<td></td>
</tr>
<tr>
<td>Phthalic anhydride</td>
<td>1.37748</td>
<td>1.26642</td>
<td>1.26442</td>
<td>0.000</td>
<td>-7.86934</td>
<td></td>
</tr>
<tr>
<td>2-Nitrobenzene</td>
<td>0.34620</td>
<td>0.30728</td>
<td>0.30724</td>
<td>0.000</td>
<td>-19.73214</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-1-phenylisobenzofuran</td>
<td>2.14861</td>
<td>1.07742</td>
<td>1.07443</td>
<td>0.000</td>
<td>-9.30036</td>
<td></td>
</tr>
<tr>
<td>2, 6, 6-Triclorobenzene</td>
<td>0.17099</td>
<td>0.16028</td>
<td>0.16028</td>
<td>0.000</td>
<td>-6.31320</td>
<td></td>
</tr>
<tr>
<td>2-Pentanone</td>
<td>1.92021</td>
<td>0.70189</td>
<td>0.67668</td>
<td>0.000</td>
<td>-19.12414</td>
<td></td>
</tr>
<tr>
<td>M-ethyl-N-nitrosomorpholine</td>
<td>0.46351</td>
<td>0.42483</td>
<td>0.42443</td>
<td>0.000</td>
<td>-8.35018</td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td>0.88558</td>
<td>0.77244</td>
<td>0.77244</td>
<td>0.000</td>
<td>-12.99437</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>1.3740</td>
<td>1.33414</td>
<td>1.33414</td>
<td>0.000</td>
<td>-2.90188</td>
<td></td>
</tr>
<tr>
<td>7-bis(2-Chloromethyl) ether</td>
<td>1.84427</td>
<td>1.81374</td>
<td>1.81374</td>
<td>0.000</td>
<td>-16.57157</td>
<td></td>
</tr>
<tr>
<td>8-2-Chlorophenol</td>
<td>1.23383</td>
<td>1.16762</td>
<td>1.16762</td>
<td>0.000</td>
<td>-5.36169</td>
<td></td>
</tr>
<tr>
<td>n-Heptane</td>
<td>++++</td>
<td>1.40602</td>
<td>1.40602</td>
<td>0.000</td>
<td>++++</td>
<td></td>
</tr>
<tr>
<td>1, 3-Dichlorobenzene</td>
<td>1.39656</td>
<td>1.35368</td>
<td>1.35368</td>
<td>0.000</td>
<td>-3.07082</td>
<td></td>
</tr>
<tr>
<td>1, 4-Dichlorobenzene</td>
<td>1.42086</td>
<td>1.34627</td>
<td>1.34627</td>
<td>0.000</td>
<td>-5.24967</td>
<td></td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>0.70858</td>
<td>0.76160</td>
<td>0.76160</td>
<td>0.000</td>
<td>7.88105</td>
<td></td>
</tr>
<tr>
<td>1, 3, 5-Trichlorobenzene</td>
<td>1.30989</td>
<td>1.30385</td>
<td>1.30385</td>
<td>0.000</td>
<td>-0.40646</td>
<td></td>
</tr>
<tr>
<td>14-bis(2-Chloroisopropyl) ether</td>
<td>1.33136</td>
<td>1.30856</td>
<td>1.30856</td>
<td>0.000</td>
<td>-1.71225</td>
<td></td>
</tr>
<tr>
<td>n-Cresol</td>
<td>0.96642</td>
<td>0.97071</td>
<td>0.97071</td>
<td>0.000</td>
<td>-6.97756</td>
<td></td>
</tr>
<tr>
<td>Anisole</td>
<td>1.70848</td>
<td>1.69907</td>
<td>1.69907</td>
<td>0.000</td>
<td>-0.69944</td>
<td></td>
</tr>
<tr>
<td>N-nitrosodipropylamine</td>
<td>0.91569</td>
<td>0.87012</td>
<td>0.87012</td>
<td>0.000</td>
<td>-4.97756</td>
<td></td>
</tr>
<tr>
<td>n-Pentane</td>
<td>1.33395</td>
<td>3.41212</td>
<td>3.41212</td>
<td>0.000</td>
<td>80.89977</td>
<td></td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>0.58138</td>
<td>0.57499</td>
<td>0.57499</td>
<td>0.000</td>
<td>-1.71459</td>
<td></td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>0.29450</td>
<td>0.28281</td>
<td>0.28281</td>
<td>0.000</td>
<td>-5.25634</td>
<td></td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>0.58713</td>
<td>0.58756</td>
<td>0.58756</td>
<td>0.000</td>
<td>-8.44236</td>
<td></td>
</tr>
<tr>
<td>2, 4-Dinitrophenol</td>
<td>43.70047</td>
<td>44.00000</td>
<td>44.00000</td>
<td>0.000</td>
<td>9.25118</td>
<td></td>
</tr>
<tr>
<td>2, 4-Dimethylphenol</td>
<td>0.34534</td>
<td>0.27459</td>
<td>0.27459</td>
<td>0.000</td>
<td>-20.44601</td>
<td></td>
</tr>
<tr>
<td>2, 6-Dichlorotoluene</td>
<td>0.34161</td>
<td>0.29856</td>
<td>0.29857</td>
<td>0.000</td>
<td>-8.88583</td>
<td></td>
</tr>
<tr>
<td>2, 4-Dichlorophenol</td>
<td>0.30817</td>
<td>0.26073</td>
<td>0.26073</td>
<td>0.000</td>
<td>-9.68759</td>
<td></td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>37.74600</td>
<td>40.00000</td>
<td>40.00000</td>
<td>0.000</td>
<td>-5.29781</td>
<td></td>
</tr>
<tr>
<td>1, 2, 4-Trichlorobenzene</td>
<td>0.37600</td>
<td>0.26818</td>
<td>0.26818</td>
<td>0.000</td>
<td>-2.83554</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.91062</td>
<td>0.81826</td>
<td>0.81826</td>
<td>0.000</td>
<td>-10.21229</td>
<td></td>
</tr>
<tr>
<td>alpha-terpinine</td>
<td>0.30898</td>
<td>0.22204</td>
<td>0.22204</td>
<td>0.000</td>
<td>6.29716</td>
<td></td>
</tr>
<tr>
<td>Carprofumate</td>
<td>0.09345</td>
<td>0.08637</td>
<td>0.08637</td>
<td>0.000</td>
<td>-7.97643</td>
<td></td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>0.16561</td>
<td>0.16220</td>
<td>0.16220</td>
<td>0.000</td>
<td>-0.71834</td>
<td></td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>0.35505</td>
<td>0.26281</td>
<td>0.26281</td>
<td>0.000</td>
<td>-7.76339</td>
<td></td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>0.63735</td>
<td>0.58660</td>
<td>0.58660</td>
<td>0.000</td>
<td>-5.97174</td>
<td></td>
</tr>
</tbody>
</table>

\[C_{0} = (2.4132(2)) - 1.33385 \quad 100\% = -9.54\% \quad \text{Vendor added 2x ray} \]

\[C_{133} = \left(\frac{347.12}{84} \right) - \frac{411.7}{24} \quad 100\% = 13.3\% \quad \text{Vendor added N, nitroso-2-MeDPA} \]
Data File: /chem/MSD8.i/s091002.b/s8i1003.d
Report Date: 04-Nov-2002 13:41

General Engineering Laboratories, Inc.

Data file: /chem/MSD8.i/s091002.b/s8i1003.d
Lab Smp Id: UBN020826-02.1
Inj Date: 10-SBP-2002 11:32
Operator: eh1
Smp Info: [UBN020826-02.1|40ng|1|SVMF|1|ANBz CCAL
Misc Info: MSD8270|WBN020821-01
Comment: Column: J & W DB-5MS:25m x 0.20mm - 0.33um Film m
Method: /chem/MSD8.i/s091002.b/MSD8-8270-091002.m
Meth Date: 04-Nov-2002 13:41 jcb
Cal Date: 07-SBP-2002 15:47
Als bottle: 3
Dil Factor: 1.00000
Integrator: HP RTB
Target Version: 3.50
Processing Host: kilroy

<table>
<thead>
<tr>
<th>Compound</th>
<th>QUANT SIG</th>
<th>MASP</th>
<th>RT</th>
<th>EXP RT REL RT</th>
<th>RESPONSE</th>
<th>CAL-AMT</th>
<th>OR-COL</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10 1,4-Dichlorobenzene-0A</td>
<td>152</td>
<td>3.740</td>
<td>3.740 (1.000)</td>
<td>297295</td>
<td>40.0000</td>
<td>34.9</td>
<td></td>
</tr>
<tr>
<td>29 Naphthalene-c8</td>
<td>136</td>
<td>4.598</td>
<td>4.598 (1.000)</td>
<td>1314065</td>
<td>40.0000</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>46 Acenaphthene-d10</td>
<td>166</td>
<td>5.844</td>
<td>5.844 (1.000)</td>
<td>759330</td>
<td>40.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 Phenanthrene-d10</td>
<td>138</td>
<td>6.842</td>
<td>6.842 (1.000)</td>
<td>1485264</td>
<td>40.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 Chrysene-d12</td>
<td>240</td>
<td>8.452</td>
<td>8.452 (1.000)</td>
<td>1361275</td>
<td>40.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92 Perylene-d12</td>
<td>264</td>
<td>9.803</td>
<td>9.803 (1.000)</td>
<td>922985</td>
<td>40.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Aniline</td>
<td>93</td>
<td>3.517</td>
<td>3.517 (0.940)</td>
<td>467646</td>
<td>40.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>309 Benzaldehyde</td>
<td>77</td>
<td>3.464</td>
<td>3.464 (0.926)</td>
<td>301356</td>
<td>40.0000</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>31 4-Chloroaniline</td>
<td>127</td>
<td>4.633</td>
<td>4.633 (1.008)</td>
<td>395767</td>
<td>40.0000</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>205 3,3'-Dichlorobenzidine</td>
<td>161</td>
<td>5.291</td>
<td>5.291 (0.804)</td>
<td>392129</td>
<td>40.0000</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td>42 o-Nitroaniline</td>
<td>65</td>
<td>5.503</td>
<td>5.503 (0.942)</td>
<td>182627</td>
<td>40.0000</td>
<td>35.1</td>
<td></td>
</tr>
<tr>
<td>41 m-Nitroaniline</td>
<td>138</td>
<td>5.791</td>
<td>5.791 (0.991)</td>
<td>182283</td>
<td>40.0000</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td>56 p-Nitroaniline</td>
<td>138</td>
<td>6.220</td>
<td>6.220 (1.064)</td>
<td>187938</td>
<td>40.0000</td>
<td>41.2</td>
<td></td>
</tr>
<tr>
<td>287 Atrazine</td>
<td>173</td>
<td>6.613</td>
<td>6.613 (0.966)</td>
<td>69794</td>
<td>40.0000</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>77 Benzo[a]pyrene</td>
<td>184</td>
<td>7.618</td>
<td>7.618 (0.901)</td>
<td>1952422</td>
<td>100.0000</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>90 3,3'-Dichlorobenzidine</td>
<td>252</td>
<td>8.387</td>
<td>8.387 (0.992)</td>
<td>770715</td>
<td>100.0000</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>173 Carbazole</td>
<td>167</td>
<td>6.971</td>
<td>6.971 (1.019)</td>
<td>1313645</td>
<td>40.0000</td>
<td>46.9</td>
<td></td>
</tr>
</tbody>
</table>
INTERNAL STANDARD COMPOUNDS

AREA AND RT SUMMARY

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>STANDARD</th>
<th>AREA LIMIT</th>
<th>SAMPLE</th>
<th>%DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOWER</td>
<td>UPPER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 1,4-Dichlorobenzene</td>
<td>239290</td>
<td>119645 478580</td>
<td>297295</td>
<td>24.24</td>
</tr>
<tr>
<td>29 Naphthalene-d8</td>
<td>1038930</td>
<td>519465 2077860</td>
<td>1314065</td>
<td>26.48</td>
</tr>
<tr>
<td>46 Acenapthene-d10</td>
<td>603402</td>
<td>301701 1206804</td>
<td>769330</td>
<td>27.50</td>
</tr>
<tr>
<td>67 Phenanthrene-d10</td>
<td>1148615</td>
<td>574308 2297230</td>
<td>1485264</td>
<td>29.31</td>
</tr>
<tr>
<td>91 Chrysene-d12</td>
<td>1077636</td>
<td>538818 2155272</td>
<td>1361275</td>
<td>26.32</td>
</tr>
<tr>
<td>98 Perylene-d12</td>
<td>806218</td>
<td>403109 1612436</td>
<td>922985</td>
<td>14.48</td>
</tr>
</tbody>
</table>

RT LIMIT

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>STANDARD</th>
<th>RT LIMIT</th>
<th>SAMPLE</th>
<th>%DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOWER</td>
<td>UPPER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 1,4-Dichlorobenzene</td>
<td>3.74</td>
<td>3.24 4.24</td>
<td>3.74</td>
<td>0.02</td>
</tr>
<tr>
<td>29 Naphthalene-d8</td>
<td>4.60</td>
<td>4.10 5.10</td>
<td>4.60</td>
<td>-0.11</td>
</tr>
<tr>
<td>46 Acenapthene-d10</td>
<td>5.85</td>
<td>5.35 6.35</td>
<td>5.84</td>
<td>-0.09</td>
</tr>
<tr>
<td>67 Phenanthrene-d10</td>
<td>6.84</td>
<td>6.34 7.34</td>
<td>6.84</td>
<td>0.01</td>
</tr>
<tr>
<td>91 Chrysene-d12</td>
<td>8.45</td>
<td>7.95 8.95</td>
<td>8.45</td>
<td>0.01</td>
</tr>
<tr>
<td>98 Perylene-d12</td>
<td>9.83</td>
<td>9.33 10.33</td>
<td>9.80</td>
<td>-0.23</td>
</tr>
</tbody>
</table>

AREA

- **AREA UPPER LIMIT** = +100% of internal standard area.
- **AREA LOWER LIMIT** = -50% of internal standard area.

RT

- **RT UPPER LIMIT** = +0.50 minutes of internal standard RT.
- **RT LOWER LIMIT** = -0.50 minutes of internal standard RT.
Contract Laboratory Analysis Request and Chain of Custody

Project Task Manager: Mike Sanders
Project Name: DSS soil sampling
Record Center Code: ER12K/DSS/DAT
Logbook Ref. No.: ER 90
Service Order No.: CF032-02
Location: Tech Area
Building: 6531-6536
Room:

Reference LOV (available at SMO)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Fraction</th>
<th>ER Sample ID or Sample Location Detail</th>
<th>Pump Depth (ft)</th>
<th>ER Site No.</th>
<th>Date/Time Collected</th>
<th>Sample Matrix</th>
<th>Container Type</th>
<th>Volume</th>
<th>Preservative</th>
<th>Collection Method</th>
<th>Sample Type</th>
<th>Parameter & Method</th>
<th>Lab Sample Requested</th>
</tr>
</thead>
<tbody>
<tr>
<td>059799-001</td>
<td>8531/1108-SP1-BH1-10-S</td>
<td>10'</td>
<td>108</td>
<td>4-3-02/1105</td>
<td>S</td>
<td>AS</td>
<td>4oz</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>VOC(8260B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>059805-001</td>
<td>8531/1108-SP1-BH1-15-S</td>
<td>15'</td>
<td>1132</td>
<td>S</td>
<td>AS</td>
<td>4oz</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>see below for parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059799-002</td>
<td>8531/1108-SP1-BH1-10-S</td>
<td>10'</td>
<td>1110</td>
<td>S</td>
<td>AG</td>
<td>500ml</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>see below for parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059805-002</td>
<td>8531/1108-SP1-BH1-15-S</td>
<td>15'</td>
<td>1335</td>
<td>S</td>
<td>AG</td>
<td>500ml</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>see below for parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059806-001</td>
<td>8531/1108-SP2-BH1-10-S</td>
<td>10'</td>
<td>1335</td>
<td>S</td>
<td>AS</td>
<td>4oz</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>see below for parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059807-001</td>
<td>8531/1108-SP2-BH1-15-S</td>
<td>15'</td>
<td>1340</td>
<td>S</td>
<td>AG</td>
<td>500ml</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>see below for parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059806-002</td>
<td>8531/1108-SP2-BH1-10-S</td>
<td>10'</td>
<td>1425</td>
<td>S</td>
<td>AG</td>
<td>500ml</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>see below for parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059809-001</td>
<td>8531/1108-SP1-BH1-23-S</td>
<td>23'</td>
<td>942/09/05</td>
<td>S</td>
<td>AS</td>
<td>4oz</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>see below for parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>059608-001</td>
<td>8531/1108-SP1-BH1-28-S</td>
<td>28'</td>
<td>1039</td>
<td>S</td>
<td>AS</td>
<td>4oz</td>
<td>4c</td>
<td>G</td>
<td>SA</td>
<td>see below for parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Turnaround Time

- Normal
- Rush

Sample

- **Name:** J. Lee
- **Signature:**
- **Inf:** Weston/635/505-284-3009

Team

- **Name:** W. Gilson
- **Signature:**
- **Inf:** NOR/635/505-345-3007

Members

- **Name:** G. Quintero
- **Signature:**
- **Inf:** Shaw/635/505-284-3009

Abnormal Conditions on Receipt

- **Lab Use:** SVOC(8270C)
- **PCB(300)+H(6330)
- **Total Cyanide(92)
- **Q6(7-197)
- **RC/RA metals(829, 8600-747) Gross alphabet(900)

Special Instructions/OC Requirements

- Please list as separate report:
- Send report to: Mike Sanders
- Stepsemonic/2843-6192
- Date/Time:

Off-Site Laboratory

Analysis Request and Chain of Custody (Continuation)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Building</th>
<th>Room</th>
<th>Reference LOV (available at SMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>059808-002</td>
<td>6536/101C-SP1-BH1-23-S</td>
<td>23'</td>
<td>10/10 4-4-2023</td>
</tr>
<tr>
<td>059809-002</td>
<td>6536/101C-SP1-BH1-28-S</td>
<td>28'</td>
<td>10/10 4-4-2023</td>
</tr>
<tr>
<td>059810-001</td>
<td>6536/101C-SP2-BH1-15-S</td>
<td>15'</td>
<td>10/10 4-4-2023</td>
</tr>
<tr>
<td>059811-001</td>
<td>6536/101C-SP2-BH1-19-S</td>
<td>19'</td>
<td>10/10 4-4-2023</td>
</tr>
<tr>
<td>059810-002</td>
<td>6536/101C-SP2-BH1-15-S</td>
<td>15'</td>
<td>10/10 4-4-2023</td>
</tr>
<tr>
<td>059811-002</td>
<td>6536/101C-SP2-BH1-19-S</td>
<td>19'</td>
<td>10/10 4-4-2023</td>
</tr>
<tr>
<td>059812-001</td>
<td>6536/101C-SP2-TB</td>
<td>N/A</td>
<td>10/10 4-4-2023</td>
</tr>
<tr>
<td>059797-001</td>
<td>6536/101C-EB</td>
<td>9-5-2023</td>
<td>3x40ml</td>
</tr>
<tr>
<td>059797-002</td>
<td>6536/101C-EB</td>
<td>08/05</td>
<td>3x40ml</td>
</tr>
<tr>
<td>059797-003</td>
<td>6536/101C-EB</td>
<td>08/10</td>
<td>2x1lt</td>
</tr>
<tr>
<td>059797-004</td>
<td>6536/101C-EB</td>
<td>08/15</td>
<td>2x1lt</td>
</tr>
<tr>
<td>059797-005</td>
<td>6536/101C-EB</td>
<td>08/20</td>
<td>1lt</td>
</tr>
<tr>
<td>059797-006</td>
<td>6536/101C-EB</td>
<td>08/25</td>
<td>500ml</td>
</tr>
<tr>
<td>059797-007</td>
<td>6536/101C-EB</td>
<td>08/30</td>
<td>500ml</td>
</tr>
<tr>
<td>059797-008</td>
<td>6536/101C-EB</td>
<td>08/35</td>
<td>1lt</td>
</tr>
<tr>
<td>059798-001</td>
<td>6536/101C-TB</td>
<td>10/10 4-4-2023</td>
<td>3x40ml</td>
</tr>
</tbody>
</table>
In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Item</th>
<th>Complete?</th>
<th></th>
<th>If no, explain</th>
<th>Resolved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>All items on COC complete - data entry clerk initialed and dated</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>1.2</td>
<td>Container type(s) correct for analyses requested</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>1.3</td>
<td>Sample volume adequate for # and types of analyses requested</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>1.4</td>
<td>Preservative correct for analyses requested</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>1.5</td>
<td>Custody records continuous and complete</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>1.6</td>
<td>Lab sample number(s) provided and SNL sample number(s) cross referenced and correct</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>1.7</td>
<td>Date samples received</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>1.8</td>
<td>Condition upon receipt information provided</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

2.0 Analytical Laboratory Report

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Item</th>
<th>Complete?</th>
<th></th>
<th>If no, explain</th>
<th>Resolved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Data reviewed, signature</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.2</td>
<td>Method reference number(s) complete and correct</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.3</td>
<td>QC analysis and acceptance limits provided (MB, LCS, Replicate)</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.4</td>
<td>Matrix spike/matrix spike duplicate data provided (if requested)</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.5</td>
<td>Detection limits provided; PQL and MDL (or IDL), MDA and Lc</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.6</td>
<td>QC batch numbers provided</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.7</td>
<td>Dilution factors provided and all dilution levels reported</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.8</td>
<td>Data reported in appropriate units and using correct significant figures</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.9</td>
<td>Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.10</td>
<td>Narrative provided</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.11</td>
<td>TAT met</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.12</td>
<td>Hold times met</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.13</td>
<td>Contractual qualifiers provided</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2.14</td>
<td>All requested result and TIC (if requested) data provided</td>
<td>Yes</td>
<td>X</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>
3.0 Data Quality Evaluation

<table>
<thead>
<tr>
<th>Item</th>
<th>Yes</th>
<th>No</th>
<th>If no, Sample ID No./Fraction(s) and Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Quantitation limit met for all samples</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Accuracy</td>
<td>X</td>
<td></td>
<td>4-Amino-2,8DNT failed SNL limits but within GEL SPC limit</td>
</tr>
<tr>
<td>a) Laboratory control samples accuracy reported and met for all samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique</td>
<td>X</td>
<td></td>
<td>several liquid SVOC analytes not within acceptance limits</td>
</tr>
<tr>
<td>c) Matrix spike recovery data reported and met</td>
<td>X</td>
<td></td>
<td>several SVOC analytes RPD% above acceptance limits, arsenic and chromium not within acceptance limits</td>
</tr>
<tr>
<td>3.4 Precision</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Replicate sample precision reported and met for all inorganic and radiochemistry samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Matrix spike duplicate RPD data reported and met for all organic samples</td>
<td>X</td>
<td></td>
<td>barium and chromium detected in inorganics equipment blank</td>
</tr>
<tr>
<td>3.5 Blank data</td>
<td>X</td>
<td></td>
<td>Tetryl detected in HE method blank; chromium detected in soil inorganics method blank; barium, chromium, lead, and silver detected in liquid inorganics method blank</td>
</tr>
<tr>
<td>a) Method or reagent blank data reported and met for all samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Sampling blank (e.g., field, trip, and equipment) data reported and met</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6 Contractual qualifiers provided: "J"-estimated quantity; "B"-analyte found in method blank above the MDL for organic or above the PQL for inorganic; "U"-analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"-analysis done beyond the holding time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7 Narrative addresses planchet flaring for gross alpha/beta</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8 Narrative included, correct, and complete</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9 Second column confirmation data provided for methods 8330 (high explosives) and 8082 (pesticides/PCBs)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.0 Calibration and Validation Documentation

<table>
<thead>
<tr>
<th>Item</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 GC/MS (8260, 8270, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) 12-hour tune check provided</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b) Initial calibration provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Continuing calibration provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Internal standard performance data provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Instrument run logs provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 GC/HPLC (8330 and 8010 and 8082)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Initial calibration provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Continuing calibration provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Instrument run logs provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Inorganics (metals)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Initial calibration provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Continuing calibration provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) ICP interference check sample data provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) ICP serial dilution provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Instrument run logs provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4 Radiochemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Instrument run logs provided</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

<table>
<thead>
<tr>
<th>Sample/Fraction No.</th>
<th>Analysis</th>
<th>Problems/Comments/Resolutions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Were deficiencies unresolved? Yes ☐ No ☐

Based on the review, this data package is complete. Yes ☐ No ☐

If no, provide: nonconformance report or correction request number __________ and date correction request was submitted: ________________

Reviewed by: __________________ Date: 10/14/02 Closed by: __________________ Date: ________________
ANNEX D
DSS Site 1010
Risk Assessment
ANNEX D
DSS Site 1010
Risk Assessment
TABLE OF CONTENTS

I. Site Description and History .. D-1
II. Data Quality Objectives ... D-1
III. Determination of Nature, Rate, and Extent of Contamination .. D-5
 III.1 Introduction .. D-5
 III.2 Nature of Contamination ... D-5
 III.3 Rate of Contaminant Migration .. D-5
 III.4 Extent of Contamination .. D-6
IV. Comparison of COCs to Background Levels .. D-6
V. Fate and Transport ... D-6
VI. Human Health Risk Assessment ... D-11
 VI.1 Introduction .. D-11
 VI.2 Step 1. Site Data ... D-11
 VI.3 Step 2. Pathway Identification .. D-11
 VI.4 Step 3. Background Screening Procedure .. D-12
 VI.4.1 Methodology ... D-12
 VI.4.2 Results .. D-12
 VI.5 Step 4. Identification of Toxicological Parameters .. D-15
 VI.6 Step 5. Exposure Assessment and Risk Characterization .. D-15
 VI.6.1 Exposure Assessment .. D-15
 VI.6.2 Risk Characterization ... D-17
 VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines D-19
 VI.8 Step 7. Uncertainty Discussion .. D-20
 VI.9 Summary .. D-21
VII. Ecological Risk Assessment .. D-22
 VII.1 Introduction .. D-22
 VII.2 Scoping Assessment .. D-22
 VII.2.1 Data Assessment .. D-23
 VII.2.2 Bioaccumulation .. D-23
 VII.2.3 Fate and Transport Potential .. D-23
 VII.2.4 Scoping Risk-Management Decision ... D-23
VIII. References .. D-23
Appendix 1 ... D-29
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of Sampling Performed to Meet DQOs</td>
<td>D-2</td>
</tr>
<tr>
<td>2</td>
<td>Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1010</td>
<td>D-3</td>
</tr>
<tr>
<td>3</td>
<td>Summary of Data Quality Requirements for DSS Site 1010</td>
<td>D-4</td>
</tr>
<tr>
<td>4</td>
<td>Nonradiological COCs for Human Health Risk Assessment at DSS Site 1010 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log Kow</td>
<td>D-7</td>
</tr>
<tr>
<td>5</td>
<td>Radiological COCs for Human Health Risk Assessment at DSS Site 1010 with Comparison to the Associated SNL/NM Background Screening Value and BCF</td>
<td>D-9</td>
</tr>
<tr>
<td>6</td>
<td>Summary of Fate and Transport at DSS Site 1010</td>
<td>D-10</td>
</tr>
<tr>
<td>7</td>
<td>Toxicological Parameter Values for DSS Site 1010 Nonradiological COCs</td>
<td>D-16</td>
</tr>
<tr>
<td>8</td>
<td>Radiological Toxicological Parameter Values for DSS Site 1010 COCs Obtained from RESRAD Risk Coefficients</td>
<td>D-17</td>
</tr>
<tr>
<td>9</td>
<td>Risk Assessment Values for DSS Site 1010 Nonradiological COCs</td>
<td>D-18</td>
</tr>
<tr>
<td>10</td>
<td>Risk Assessment Values for DSS Site 1010 Nonradiological Background Constituents</td>
<td>D-18</td>
</tr>
<tr>
<td>11</td>
<td>Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1010, Building 6536 Septic System and Seepage Pit Carcinogens</td>
<td>D-22</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conceptual Site Model Flow Diagram for DSS Site 1010, Building 6536 Septic System and Seepage Pit</td>
<td>D-13</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
DSS SITE 1010: RISK ASSESSMENT REPORT

I. Site Description and History

Drain and Septic Systems (DSS) Site 1010, the Building 6536 Septic System and Seepage Pit, at Sandia National Laboratories/New Mexico (SNL/NM), is located in Technical Area (TA)-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (DOE). The septic system consisted of a septic tank connected to a single seepage pit and a second separate seepage pit with no septic tank. Available information indicates that Building 6536 was constructed in 1967 (SNL/NM March 2003), and it is assumed that the septic system and seepage pit were also constructed at that time. By June 1991, the effluent discharges from Building 6536 were routed to the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system and seepage pit lines were disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003).

Environmental concern about DSS Site 1010 is based upon the potential for the release of constituents of concern (COCs) in effluent discharged to the environment via the two seepage pits at this site. Because operational records were not available, the investigation was planned to be consistent with other DSS site investigations and to sample for the COCs most commonly found at similar facilities.

The ground surface in the vicinity of the site is flat or slopes slightly to the west. The closest major drainage is the Arroyo del Coyote, located approximately 1 mile northeast of the site. No springs or perennial surface-water bodies are located within 2.4 miles of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Surface-water runoff in the vicinity of the site is minor because the surface slope is flat or inclines to the west. Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996). Most of the area immediately surrounding DSS Site 1010 is unpaved with some native vegetation, and no storm sewers are used to direct surface water away from the site.

DSS Site 1010 lies at an average elevation of approximately 5,407 feet above mean sea level. The groundwater beneath the site occurs in unconfined conditions in essentially unconsolidated silts, sands, and gravels. The depth to groundwater is approximately 487 feet below ground surface (bgs). Groundwater flow is thought to be to the west in this area (SNL/NM March 2002). The nearest groundwater monitoring well (TAV-MW5) is approximately 900 feet north of the site. The nearest production wells are KAFB-4 and KAFB-11, which are approximately 2.8 and 3.2 miles northwest and northeast of the site, respectively.

II. Data Quality Objectives

The Data Quality Objectives (DQOs) presented in the “Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico” (SNL/NM October...
1999) and “Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems” (SNL/NM November 2001) identified the site-specific sample locations, sample depths, sampling procedures, and analytical requirements for this and many other DSS sites. The DQOs outlined the quality assurance (QA)/quality control (QC) requirements necessary for producing defensible analytical data suitable for risk assessment purposes. The sampling conducted at this site was designed to:

- Determine whether hazardous waste or hazardous constituents were released at the site.
- Characterize the nature and extent of any releases.
- Provide analytical data of sufficient quality to support risk assessments.

Table 1 summarizes the rationale for determining the sampling locations at this site. The source of potential COCs at DSS Site 1010 was effluent discharged to the environment from the two seepage pits at this site.

Table 1

Summary of Sampling Performed to Meet DQOs

<table>
<thead>
<tr>
<th>DSS Site 1010 Sampling Areas</th>
<th>Potential COC Source</th>
<th>Number of Sampling Locations</th>
<th>Sample Density (samples/acre)</th>
<th>Sampling Location Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil beneath the septic system seepage pit</td>
<td>Effluent discharged to the environment from the septic system seepage pit</td>
<td>1</td>
<td>NA</td>
<td>Evaluate potential COC releases to the environment from effluent discharged from the septic system seepage pit.</td>
</tr>
<tr>
<td>Soil beneath the seepage pit</td>
<td>Effluent discharged to the environment from the seepage pit</td>
<td>1</td>
<td>NA</td>
<td>Evaluate potential COC releases to the environment from effluent discharged from the seepage pit.</td>
</tr>
</tbody>
</table>

COC = Constituent of concern.
DQO = Data Quality Objective.
DSS = Drain and Septic Systems.
NA = Not applicable.

The soil samples were collected from two boring locations at DSS Site 1010 with a Geoprobe™ from two 3- or 4-foot-long sampling intervals. The septic system seepage pit sampling intervals started at 15 and 20 feet bgs and at 23 and 28 feet bgs in the single seepage pit boring. The soil samples were collected in accordance with the procedures described in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). Table 2 summarizes the types of confirmatory and QA/QC samples collected at the site and the laboratories that performed the analyses.

The DSS Site 1010 soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), high explosive (HE) compounds, polychlorinated...
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>VOCs</th>
<th>SVOCs</th>
<th>PCBs</th>
<th>HE</th>
<th>RCRA Metals</th>
<th>Hexavalent Chromium</th>
<th>Cyanide</th>
<th>Gamma Spectroscopy</th>
<th>Gross Alpha/Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmatory</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Duplicates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EBs and TBs (VOCs only)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total Samples</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Analytical Laboratory</td>
<td>GEL</td>
<td>GEL</td>
<td>GEL</td>
<td>GEL</td>
<td>GEL</td>
<td>GEL</td>
<td>GEL</td>
<td>GEL</td>
<td>GEL</td>
</tr>
</tbody>
</table>

Table 2

Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1010

- DSS = Drain and Septic Systems.
- EB = Equipment blank.
- GEL = General Engineering Laboratories, Inc.
- HE = High explosive(s).
- PCB = Polychlorinated biphenyl.
- QA = Quality assurance.
- QC = Quality control.
- RPSD = Radiation Protection Sample Diagnostics Laboratory.
- SVOC = Semivolatile organic compound.
- TB = Trip blank.
- VOC = Volatile organic compound.
biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) metals, hexavalent chromium, cyanide, radionuclides, and gross alpha/beta activity. The samples were analyzed by an off-site laboratory (General Engineering Laboratories, Inc.) and the on-site SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory. Table 3 summarizes the analytical methods and the data quality requirements from the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001).

Table 3
Summary of Data Quality Requirements for DSS Site 1010

<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>Data Quality Level</th>
<th>GEL</th>
<th>RPSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOCs, EPA Method 8260</td>
<td>Defensible</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>SVOCs, EPA Method 8270</td>
<td>Defensible</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>PCBs, EPA Method 8082</td>
<td>Defensible</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>HE Compounds, EPA Method 8330</td>
<td>Defensible</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>RCRA Metals, EPA Method 6000/7000</td>
<td>Defensible</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>Hexavalent Chromium, EPA Method 7196A</td>
<td>Defensible</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>Total Cyanide, EPA Method 9012A</td>
<td>Defensible</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>Gamma Spectroscopy Radionuclides, EPA Method 901.1</td>
<td>Defensible</td>
<td>None</td>
<td>4</td>
</tr>
<tr>
<td>Gross Alpha/Beta Activity, EPA Method 900.0</td>
<td>Defensible</td>
<td>4</td>
<td>None</td>
</tr>
</tbody>
</table>

Note: The number of samples does not include QA/QC samples such as duplicates, trip blanks, and equipment blanks.

aEPA November 1986.

DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
GEL = General Engineering Laboratories, Inc.
HE = High explosive(s).
PCB = Polychlorinated biphenyl.
QA = Quality assurance.
QC = Quality control.
RPSD = Radiation Protection Sample Diagnostics Laboratory.
SVOC = Semivolatile organic compound.
VOC = Volatile organic compound.

The QA/QC samples were collected during the sampling effort according to the Environmental Restoration (ER) Project Quality Assurance Project Plan. The QA/QC samples consisted of one trip blank (for VOCs only) and one set of equipment blanks. No significant QA/QC problems were identified in the QA/QC samples.
All of the soil sample results were verified/validated by SNL/NM according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December 1999). The data validation reports are presented in the associated DSS Site 1010 proposal for no further action (NFA). The gamma spectroscopy data from the RPSD Laboratory were reviewed according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). The gamma spectroscopy results are presented in the NFA proposal. The reviews confirmed that the analytical data are defensible and therefore acceptable for use in the NFA proposal. Therefore, the DQOs have been fulfilled.

III. Determination of Nature, Rate, and Extent of Contamination

III.1 Introduction

The determination of the nature, migration rate, and extent of contamination at DSS Site 1010 is based upon an initial conceptual model validated with confirmatory sampling at the site. The initial conceptual model was developed from archival site research, site inspections, soil sampling, and passive soil-vapor sampling. The DQOs contained in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) identified the sample locations, sample density, sample depth, and analytical requirements. The sample data were subsequently used to develop the final conceptual model for DSS Site 1010, which is presented in Section 4.0 of the associated NFA proposal. The quality of the data specifically used to determine the nature, migration rate, and extent of contamination is described in the following sections.

III.2 Nature of Contamination

Both the nature of contamination and the potential for the degradation of COCs at DSS Site 1010 were evaluated using laboratory analyses of the soil samples. The analytical requirements included analyses for VOCs, SVOCs, HE compounds, PCBs, RCRA metals, hexavalent chromium, cyanide, radionuclides by gamma spectroscopy, and gross alpha/beta activity. The analytes and methods listed in Tables 2 and 3 are appropriate to characterize the COCs and potential degradation products at DSS Site 1010.

III.3 Rate of Contaminant Migration

The septic system and seepage pit at DSS Site 1010 were deactivated in the early 1990s when Building 6536 was connected to an extension of the City of Albuquerque sanitary sewer system. The migration rate of COCs that may have been introduced into the subsurface via the two seepage pits at this site was therefore dependent upon the volume of aqueous effluent discharged to the environment from this system when it was operational. Any migration of COCs from this site after use of the septic system and seepage pit was discontinued has been predominantly dependent upon precipitation. However, it is highly unlikely that sufficient precipitation has fallen on the site to reach the depth at which COCs may have been discharged to the subsurface from this system. Analytical data generated from the soil sampling conducted at the site are adequate to characterize the rate of COC migration at DSS Site 1010.
III.4 Extent of Contamination

Subsurface soil samples were collected from boreholes drilled at two locations beneath the effluent release points (the two seepage pits) at DSS Site 1010 to assess whether releases of effluent from the septic system caused any environmental contamination.

The DSS Site 1010 soil samples were collected at sampling depths starting at 15 and 20 feet bgs beneath the septic system (northeastern) seepage pit, and 23 and 28 feet beneath the single (southwestern) seepage pit. Sampling intervals started at the depths at which effluent discharged from the two seepage pits would have entered the subsurface environment at the site. This sampling procedure was required by New Mexico Environment Department (NMED) regulators and has been used at numerous DSS-type sites at SNL/NM. The soil samples are considered to be representative of the soil potentially contaminated with the COCs at this site and are sufficient to determine the vertical extent, if any, of COCs.

IV. Comparison of COCs to Background Levels

Site history and characterization activities are used to identify potential COCs. The DSS Site 1010 NFA proposal describes the identification of COCs and the sampling that was conducted in order to determine the concentration levels of those COCs across the site. Generally, COCs evaluated in this risk assessment include all detected organic and all inorganic and radiological COCs for which samples were analyzed. When the detection limit of an organic compound is too high (i.e., could possibly cause an adverse effect to human health or the environment), the compound is retained. Nondetected organic compounds not included in this assessment were determined to have detection limits low enough to ensure protection of human health and the environment. In order to provide conservatism in this risk assessment, the calculation uses only the maximum concentration value of each COC found for the entire site. The SNL/NM maximum background concentration (Dinwiddie September 1997) was selected to provide the background screen listed in Tables 4 and 5.

Nonradiological inorganic constituents that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, are not included in this risk assessment (EPA 1989). Both radiological and nonradiological COCs are evaluated. The nonradiological COCs included in this risk assessment consist of both inorganic and organic compounds.

Table 4 lists the nonradiological COCs and Table 5 lists the radiological COCs for the human health risk assessment at DSS Site 1010. All samples were collected from depths greater than 5 feet bgs; therefore, evaluation of ecological risk was not performed. Both tables show the associated SNL/NM maximum background concentration values (Dinwiddie September 1997). Section VI.4 discusses the results presented in Tables 4 and 5.

V. Fate and Transport

The primary releases of COCs at DSS Site 1010 were to the subsurface soil resulting from the discharge of effluents from the Building 6536 septic system and seepage pit. Wind, water, and biota are natural mechanisms of COC transport from the primary release point; however, because the discharge was to subsurface soil, none of these are considered to be
Table 4
Nonradiological COCs for Human Health Risk Assessment at DSS Site 1010 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K\text{ow}

<table>
<thead>
<tr>
<th>COC</th>
<th>Maximum Concentration (All Samples) (mg/kg)</th>
<th>SNL/NM Background Concentration (mg/kg)</th>
<th>Is Maximum COC Concentration Less Than or Equal to the Applicable SNL/NM Background Screening Value?</th>
<th>BCF (maximum aquatic)</th>
<th>Log K\text{ow} (for organic COCs)</th>
<th>Bioaccumulator?b (BCF>40, Log K\text{ow}>4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.94 J</td>
<td>4.4</td>
<td>Yes</td>
<td>44c</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>Barium</td>
<td>181</td>
<td>214</td>
<td>Yes</td>
<td>170d</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.295 J</td>
<td>0.9</td>
<td>Yes</td>
<td>64c</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>Chromium, total</td>
<td>9.32</td>
<td>15.9</td>
<td>Yes</td>
<td>16c</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>Chromium VI</td>
<td>0.0272e</td>
<td>1</td>
<td>Yes</td>
<td>16c</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>Cyanide</td>
<td>0.021g</td>
<td>NC</td>
<td>Unknown</td>
<td>NC</td>
<td>–</td>
<td>Unknown</td>
</tr>
<tr>
<td>Lead</td>
<td>6.86</td>
<td>11.8</td>
<td>Yes</td>
<td>49c</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0221</td>
<td><0.1</td>
<td>Unknown</td>
<td>5,500c</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.311 J</td>
<td><1</td>
<td>Unknown</td>
<td>800f</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>Silver</td>
<td>0.0447e</td>
<td><1</td>
<td>Unknown</td>
<td>0.5c</td>
<td>–</td>
<td>No</td>
</tr>
<tr>
<td>Organic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>0.0112</td>
<td>NA</td>
<td>NA</td>
<td>1g</td>
<td>0.29g</td>
<td>No</td>
</tr>
<tr>
<td>bis(2-Ethylhexyl) phthalate</td>
<td>0.0861 J</td>
<td>NA</td>
<td>NA</td>
<td>851h</td>
<td>7.6c</td>
<td>Yes</td>
</tr>
<tr>
<td>PCBsi</td>
<td>0.0708</td>
<td>NA</td>
<td>NA</td>
<td>31,200c</td>
<td>6.72c</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: Bold indicates the COCs that exceed the background screening values and/or are bioaccumulators.
aDinwiddie September 1997, Southwest Area Supergroup.
bNMED March 1998.
cYanicak March 1997.
dNeumann 1976.
eParameter was not detected. Concentration is one-half the maximum detection limit.
fCallahan et al. 1979.
gHoward 1990.
hHoward 1989.
iMicromedex, Inc. 1998.
jSum of Aroclor-1242, Aroclor-1254, and Aroclor-1260 in the individual sample with the highest PCB concentrations. Value is the sum of either the maximum detection or one-half of the maximum detection limit.
Table 4 (Concluded)
Nonradiological COCs for Human Health Risk Assessment at DSS Site 1010 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K_{ow}

<table>
<thead>
<tr>
<th>BCF</th>
<th>Bioconcentration factor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COC</td>
<td>Constituent of concern.</td>
</tr>
<tr>
<td>DSS</td>
<td>Drain and Septic Systems.</td>
</tr>
<tr>
<td>J</td>
<td>Estimated concentration.</td>
</tr>
<tr>
<td>K_{ow}</td>
<td>Octanol-water partition coefficient.</td>
</tr>
<tr>
<td>Log</td>
<td>Logarithm (base 10).</td>
</tr>
<tr>
<td>mg/kg</td>
<td>Milligram(s) per kilogram.</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>NC</td>
<td>Not calculated.</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated biphenyl.</td>
</tr>
<tr>
<td>SNL/NM</td>
<td>Sandia National Laboratories/New Mexico.</td>
</tr>
<tr>
<td>-</td>
<td>Information not available.</td>
</tr>
</tbody>
</table>
Table 5
Radiological COCs for Human Health Risk Assessment at DSS Site 1010 with Comparison to the Associated SNL/NM Background Screening Value and BCF

<table>
<thead>
<tr>
<th>COC</th>
<th>Maximum Activity (All Samples) (pCi/g)</th>
<th>SNL/NM Background Activity (pCi/g)</th>
<th>Is Maximum COC Activity Less Than or Equal to the Applicable SNL/NM Background Screening Value?</th>
<th>BCF (maximum aquatic)</th>
<th>Is COC a Bioaccumulator?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>ND (0.0343)</td>
<td>0.079</td>
<td>Yes</td>
<td>3,000^d</td>
<td>Yes</td>
</tr>
<tr>
<td>Th-232</td>
<td>0.491</td>
<td>1.01</td>
<td>Yes</td>
<td>3,000^d</td>
<td>Yes</td>
</tr>
<tr>
<td>U-235</td>
<td>ND (0.185)</td>
<td>0.16</td>
<td>No</td>
<td>900^d</td>
<td>Yes</td>
</tr>
<tr>
<td>U-238</td>
<td>ND (0.496)</td>
<td>1.4</td>
<td>Yes</td>
<td>900^d</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: **Bold** indicates COCs that exceed the background screening values and/or are bioaccumulators.

^aValue listed is the greater of either the maximum detection or the highest MDA.

^bDimwiddie September 1997, Southwest Area Supergroup.

^cNMED March 1998.

BCF = Bioconcentration factor.
COC = Constituent of concern.
DSS = Drain and Septic Systems.
MDA = Minimum detectable activity.
ND () = Not detected above the MDA, shown in parentheses.
ND () = Not detected, but the MDA (shown in parentheses) exceeds background.
pCi/g = Picocurie(s) per gram.
SNL/NM = Sandia National Laboratories/New Mexico.
of potential significance as transport mechanisms at this site. Because the seepage pits are no longer active, additional infiltration of water is not expected. Infiltration of precipitation is essentially nonexistent at DSS Site 1010, as virtually all of the moisture either drains away from the site or evaporates. Because groundwater at this site is approximately 487 feet bgs, the potential for COCs to reach groundwater through the unsaturated zone above the water table is extremely low.

The COCs at DSS Site 1010 include both inorganic and organic constituents. The inorganic COCs include both radiological and nonradiological analytes. With the exception of cyanide, the inorganic COCs are elemental in form and are not considered to be degradable. Transformations of these inorganic constituents could include changes in valence (oxidation/reduction reactions) or incorporation into organic forms (e.g., the conversion of selenite or selenate from soil to seleno-amino acids in plants). Cyanide can be metabolized by soil biota. Radiological COCs will undergo decay to stable isotopes or radioactive daughter elements. However, because of the long half-life of the radiological COC (U-235), the aridity of the environment at this site, and the lack of potential contact with biota, none of these mechanisms are expected to result in significant losses or transformations of the inorganic COCs.

The organic COCs at DSS Site 1010 are limited to 2-butanone, bis(2-ethylhexyl) phthalate, and PCBs. Organic COCs may be degraded through photolysis, hydrolysis, and biotransformation. Photolysis requires light and therefore takes place in the air, at the ground surface, or in surface water. Hydrolysis includes chemical transformations in water and may occur in the soil solution. Biotransformation (i.e., transformation caused by plants, animals, and microorganisms) may occur; however, biological activity may be limited by the arid environment at this site. Because of the depth of the COCs in the soil, the loss of 2-butanone through volatilization is expected to be minimal.

Table 6 summarizes the fate and transport processes that can occur at DSS Site 1010. The COCs at this site include both radiological and nonradiological inorganic analytes as well as organic analytes. Wind, surface water, and biota are considered to be of low significance as potential transport mechanisms at this site. Significant leaching into the subsurface soil is unlikely, and leaching into the groundwater at this site is highly unlikely. The potential for transformation of COCs is low, and loss through decay of the radiological COC is insignificant because of its long half-life.

Table 6
Summary of Fate and Transport at DSS Site 1010

<table>
<thead>
<tr>
<th>Transport and Fate Mechanism</th>
<th>Existence at Site</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Surface runoff</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Migration to groundwater</td>
<td>No</td>
<td>None</td>
</tr>
<tr>
<td>Food chain uptake</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Transformation/degredation</td>
<td>Yes</td>
<td>Low</td>
</tr>
</tbody>
</table>

DSS = Drain and Septic Systems.
VI. Human Health Risk Assessment

VI.1 Introduction

The human health risk assessment of this site includes a number of steps that culminate in a quantitative evaluation of the potential adverse human health effects caused by constituents located at the site. The steps to be discussed include the following:

<table>
<thead>
<tr>
<th>Step 1.</th>
<th>Site data are described that provide information on the potential COCs, as well as the relevant physical characteristics and properties of the site.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2.</td>
<td>Potential pathways are identified by which a representative population might be exposed to the COCs.</td>
</tr>
<tr>
<td>Step 3.</td>
<td>The potential intake of these COCs by the representative population is calculated using a tiered approach. The first component of the tiered approach is a screening procedure that compares the maximum concentration of the COC to an SNL/NM maximum background screening value. COCs that are not eliminated during the first screening procedure are carried forward in the risk assessment process.</td>
</tr>
<tr>
<td>Step 4.</td>
<td>Toxicological parameters are identified and referenced for COCs that were not eliminated during the screening procedure.</td>
</tr>
<tr>
<td>Step 5.</td>
<td>Potential toxicity effects (specified as a hazard index [HI]) and estimated excess cancer risks are calculated for nonradiological COCs and background. For radiological COCs, the incremental total effective dose equivalent (TEDE) and incremental estimated cancer risk are calculated by subtracting applicable background concentrations directly from maximum on-site contaminant values. This background subtraction applies only when a radiological COC occurs as contamination and exists as a natural background radionuclide.</td>
</tr>
<tr>
<td>Step 6.</td>
<td>These values are compared with guidelines established by the U.S. Environmental Protection Agency (EPA), NMED, and the DOE to determine whether further evaluation and potential site cleanup are required. Nonradiological COC risk values also are compared to background risk so that an incremental risk can be calculated.</td>
</tr>
<tr>
<td>Step 7.</td>
<td>Uncertainties of the above steps are addressed.</td>
</tr>
</tbody>
</table>

VI.2 Step 1. Site Data

Section I of this risk assessment provides the site description and history for DSS Site 1010. Section II presents a comparison of results to DQOs. Section III discusses the nature, rate, and extent of contamination.

VI.3 Step 2. Pathway Identification

DSS Site 1010 has been designated with a future land-use scenario of industrial (DOE et al. September 1995) (see Appendix 1 for default exposure pathways and parameters). However, the residential land-use scenario is also considered in the pathway analysis. Because of the location and characteristics of the potential contaminants, the primary pathway for human exposure is considered to be soil ingestion for the nonradiological COCs and direct gamma exposure for the radiological COCs. The inhalation pathway for both nonradiological and radiological COCs is included because the potential exists to inhale dust and volatiles. Soil ingestion is included for the radiological COCs as well. The dermal pathway is included for the nonradiological COCs because of the potential for the receptor to be exposed to contaminated soil. No water pathways to the groundwater are considered. Depth to groundwater at DSS
Site 1010 is approximately 487 feet bgs. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Figure 1 shows the conceptual model flow diagram for DSS Site 1010.

Pathway Identification

<table>
<thead>
<tr>
<th>Nonradiological Constituents</th>
<th>Radiological Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil ingestion</td>
<td>Soil ingestion</td>
</tr>
<tr>
<td>Inhalation (dust and volatiles)</td>
<td>Inhalation (dust)</td>
</tr>
<tr>
<td>Dermal contact</td>
<td>Direct gamma</td>
</tr>
</tbody>
</table>

VI.4 Step 3. Background Screening Procedure

This section discusses Step 3, the background screening procedure, which compares the maximum COC concentration to the background screening level. The methodology and results are described in the following sections.

VI.4.1 Methodology

Maximum concentrations of nonradiological COCs are compared to the approved SNL/NM maximum screening levels for this area. The SNL/NM maximum background concentration was selected to provide the background screen in Table 4 and used to calculate risk attributable to background in Section VI.6.2. Only the COCs that were detected above the corresponding SNL/NM maximum background screening levels or that do not have either a quantifiable or calculated background screening level are considered in further risk assessment analyses.

For radiological COCs that exceed the SNL/NM background screening levels, background values are subtracted from the individual maximum radionuclide concentrations. Those that do not exceed these background levels are not carried any further in the risk assessment. This approach is consistent with DOE Order 5400.5, "Radiation Protection of the Public and the Environment" (DOE 1993). Radiological COCs that do not have a background value and are detected above the analytical minimum detectable activity (MDA) are carried through the risk assessment at the maximum levels. The resultant radiological COCs remaining after this step are referred to as background-adjusted radiological COCs.

VI.4.2 Results

Tables 4 and 5 show the DSS Site 1010 maximum COC concentrations that were compared to the SNL/NM maximum background values (Dinwiddie September 1997) for the human health risk assessment. For the nonradiological COCs, four constituents do not have quantified background screening concentrations; therefore, it is unknown whether these COCs exceed background. Three constituents are organic compounds that do not have corresponding background screening values.
Figure 1
Conceptual Site Model Flow Diagram for DSS Site 1010, Building 6536 Septic System and Seepage Pit
The maximum concentration value for total PCBs in an individual sample is 0.0708 milligrams (mg)/kilogram (kg). This concentration is less than the EPA screening level of 1 mg/kg (Title 40, Code of Federal Regulations, Part 761). Because the maximum concentration for PCBs at this site is less than the screening value, PCBs are eliminated from further consideration in the human health risk assessment.

For the radiological COCs, one constituent (U-235) exhibited an MDA greater than its background screening level.

VI.5 Step 4. Identification of Toxicological Parameters

Tables 7 (nonradiological) and 8 (radiological) list the COCs retained in the risk assessment and the values for the available toxicological information. The toxicological values for the nonradiological COCs presented in Table 7 were obtained from the Integrated Risk Information System (IRIS) (EPA 2003), the Health Effects Assessment Summary Tables (HEAST) (EPA 1997a), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000), the EPA Region 6 electronic database (EPA 2002a), and the Risk Assessment Information System (ORNL 2003) electronic databases. Dose conversion factors (DCFs) used in determining the excess TEDE values for radiological COCs for the individual pathways were the default values provided in the RESRAD computer code (Yu et al. 1993a) as developed in the following documents:

- DCFs for ingestion and inhalation were taken from “Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion” (EPA 1988).
- DCFs for surface contamination (contamination on the surface of the site) were taken from DOE/EH-0070, “External Dose-Rate Conversion Factors for Calculation of Dose to the Public” (DOE 1988).
- DCFs for volume contamination (exposure to contamination deeper than the immediate surface of the site) were calculated using the methods discussed in “Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil” (Kocher 1983) and in ANL/EAIS-8, “Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil” (Yu et al. 1993b).

VI.6 Step 5. Exposure Assessment and Risk Characterization

Section VI.6.1 describes the exposure assessment for this risk assessment. Section VI.6.2 provides the risk characterization, including the HI and excess cancer risk for both the potential nonradiological COCs and associated background for the industrial and residential land-use scenarios.

VI.6.1 Exposure Assessment

Appendix 1 provides the equations and parameter input values used in calculating intake values and subsequent HI and excess cancer risk values for the individual exposure pathways.
Table 7
Toxicological Parameter Values for DSS Site 1010 Nonradiological COCs

<table>
<thead>
<tr>
<th>COC</th>
<th>RfD_o (mg/kg-d)</th>
<th>Confidence</th>
<th>RfD_{inh} (mg/kg-d)</th>
<th>Confidence</th>
<th>$S\text{F}_o$ (mg/kg-d)$^{-1}$</th>
<th>$S\text{F}_{inh}$ (mg/kg-d)$^{-1}$</th>
<th>Cancer Class</th>
<th>ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanide</td>
<td>2E-2c</td>
<td>M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>0.1d</td>
</tr>
<tr>
<td>Mercury</td>
<td>3E-4a</td>
<td>-</td>
<td>8.6E-5c</td>
<td>M</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>0.01d</td>
</tr>
<tr>
<td>Selenium</td>
<td>5E-3c</td>
<td>H</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>0.01d</td>
</tr>
<tr>
<td>Silver</td>
<td>5E-3c</td>
<td>L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>0.01d</td>
</tr>
<tr>
<td>Organic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>6E-1c</td>
<td>L</td>
<td>2.9E-1c</td>
<td>L</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>0.1d</td>
</tr>
<tr>
<td>bis(2-Ethylhexyl) phthalate</td>
<td>2E-2f</td>
<td>-</td>
<td>2E-2f</td>
<td>-</td>
<td>1.4E-2f</td>
<td>1.4E-2f</td>
<td>-</td>
<td>0.01g</td>
</tr>
</tbody>
</table>

bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989) taken from IRIS (EPA 2003):

D = Not classifiable as to human carcinogenicity.

cToxicological parameter values from IRIS electronic database (EPA 2003).

dToxicological parameter values from NMED (December 2000).

eToxicological parameter values from HEAST (EPA 1997a).

fToxicological parameter values from EPA Region 6 (EPA 2002a).

gToxicological parameter values from Risk Assessment Information System (ORNL 2003).

ABS = Gastrointestinal absorption coefficient.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

HEAST = Health Effects Assessment Summary Tables.

IRIS = Integrated Risk Information System.

mg/kg-d = Milligram(s) per kilogram-day.

(mg/kg-d)$^{-1}$ = Per milligram per kilogram-day.

NMED = New Mexico Environment Department.

RfD_{inh} = Inhalation chronic reference dose.

RfD_o = Oral chronic reference dose.

$S\text{F}_{inh}$ = Inhalation slope factor.

$S\text{F}_o$ = Oral slope factor.

- = Information not available.
Table 8
Radiological Toxicological Parameter Values for DSS Site 1010 COCs Obtained from RESRAD Risk Coefficients

<table>
<thead>
<tr>
<th>COC</th>
<th>S_F^O (1/pCi)</th>
<th>S_F^{inh} (1/pCi)</th>
<th>S_F^{ev} (g/pCi-yr)</th>
<th>Cancer Class b</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-235</td>
<td>4.70E-11</td>
<td>1.30E-08</td>
<td>2.70E-07</td>
<td>A</td>
</tr>
</tbody>
</table>

aYu et al. 1993a.

bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989): A = Human carcinogen for high dose and high dose rate (i.e., greater than 50 rem per year). For low-level environmental exposures, the carcinogenic effect has not been observed and documented.

1/pCi = One per picocurie.
COC = Constituent of concern.
DSS = Drain and Septic Systems.
EPA = U.S. Environmental Protection Agency.
g/pCi-yr = Gram(s) per picocurie-year.
S_F^{ev} = External volume exposure slope factor.
S_F^{inh} = Inhalation slope factor.
S_F^O = Oral (ingestion) slope factor.

The appendix shows parameters for both industrial and residential land-use scenarios. The equations for nonradiological COCs are based upon the Risk Assessment Guidance for Superfund (RAGS) (EPA 1989). Parameters are based upon information from the RAGS (EPA 1989), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000), as well as other EPA and NMED guidance documents. The parameters reflect the reasonable maximum exposure (RME) approach advocated by the RAGS (EPA 1989). For the radiological COC, the coded equation provided in RESRAD computer code is used to estimate the incremental TEDE and cancer risk for individual exposure pathways. Further discussion of this process is provided in the "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD" (Yu et al. 1993a).

Although the designated land-use scenario for this site is industrial, risk and TEDE values for a residential land-use scenario are also presented.

VI.6.2 Risk Characterization

Table 9 shows an HI of 0.00 for the DSS Site 1010 nonradiological COCs and an estimated excess cancer risk of 4E-10 for the designated industrial land-use scenario. The numbers presented include exposure from soil ingestion, dermal contact, and dust and volatile inhalation for nonradiological COCs. Table 10 shows an HI of 0.00 and no quantified estimated excess cancer risk for the DSS Site 1010 associated background constituents under the designated industrial land-use scenario.

For the radiological COC, contribution from the direct gamma exposure pathway is included. For the industrial land-use scenario, a TEDE was calculated that results in an incremental TEDE of 3.6E-3 millirem (mrem)/year (yr). In accordance with EPA guidance found in Office of Solid Waste and Emergency Response (OSWER) Directive No. 9200.4-18 (EPA 1997b), an incremental TEDE of 15 mrem/yr is used for the probable land-use scenario (industrial in this
Table 9
Risk Assessment Values for DSS Site 1010 Nonradiological COCs

<table>
<thead>
<tr>
<th>COC</th>
<th>Maximum Concentration (mg/kg)</th>
<th>Industrial Land-Use Scenario(^a)</th>
<th>Residential Land-Use Scenario(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Index</td>
<td>Cancer Risk</td>
<td>Hazard Index</td>
</tr>
<tr>
<td>Inorganic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanide</td>
<td>0.021(^b)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0221</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.311 J</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Silver</td>
<td>0.0447(^b)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Organic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>0.0112</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>bis(2-Ethylhexyl) phthalate</td>
<td>0.0861 J</td>
<td>0.00</td>
<td>4E-10</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>4E-10</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\(^a\)EPA 1989.
\(^b\)Concentration is one-half the maximum detection limit.
COC = Constituent of concern.
DSS = Drain and Septic Systems.
J = Estimated concentration.
mg/kg = Milligram(s) per kilogram.
- = Information not available.

Table 10
Risk Assessment Values for DSS Site 1010 Nonradiological Background Constituents

<table>
<thead>
<tr>
<th>COC</th>
<th>Background Concentration(^a) (mg/kg)</th>
<th>Industrial Land-Use Scenario(^b)</th>
<th>Residential Land-Use Scenario(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Index</td>
<td>Cancer Risk</td>
<td>Hazard Index</td>
</tr>
<tr>
<td>Cyanide</td>
<td>NC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Selenium</td>
<td><1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Silver</td>
<td><1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a\)Dinwiddie September 1997, Southwest Area Supergroup.
\(^b\)EPA 1989.
COC = Constituent of concern.
DSS = Drain and Septic Systems.
mg/kg = Milligram(s) per kilogram.
NC = Not calculated.
- = Information not quantified.
case); the calculated dose value for DSS Site 1010 for the industrial land-use scenario is well below this guideline. The estimated excess cancer risk is 4.1E-8.

For the nonradiological COCs under the residential land-use scenario, the HI is 0.00 with an estimated excess cancer risk of 2E-9 (Table 9). The numbers in the table include exposure from soil ingestion, dermal contact, and dust and volatile inhalation. Although the EPA (1991) generally recommends that inhalation not be included in a residential land-use scenario, this pathway is included because of the potential for soil in Albuquerque, New Mexico, to be eroded and for dust to be present in predominantly residential areas. Because of the nature of the local soil, other exposure pathways are not considered (see Appendix 1). Table 10 shows an HI of 0.00 and no quantified estimated excess cancer risk for the DSS Site 1010 associated background constituents under the residential land-use scenario.

For the radiological COC, the incremental TEDE for the residential land-use scenario is 9.3E-3 mrem/yr. The guideline being used is an excess TEDE of 75 mrem/yr (SNL/NM February 1998) for a complete loss of institutional controls (residential land use in this case); the calculated dose value for DSS Site 1010 for the residential land-use scenario is well below this guideline. Consequently, DSS Site 1010 is eligible for unrestricted radiological release as the residential land-use scenario results in an incremental TEDE of less than 75 mrem/yr to the on-site receptor. The estimated excess cancer risk is 1.2E-7. The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18 "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," (EPA 1997b). This summation is tabulated in Section VI.9, Summary.

VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines

The human health risk assessment analysis evaluates the potential for adverse health effects for both the industrial (the designated land-use scenario for this site) and residential land-use scenarios.

For the nonradiological COCs under the industrial land-use scenario, the HI is 0.00 (less than the numerical guideline of 1 suggested in the RAGS [EPA 1989]). The estimated excess cancer risk is 4E-10. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. This assessment also determined risks considering background concentrations of the potential nonradiological COCs for both the industrial and residential land-use scenarios. Assuming the industrial land-use scenario, there is neither a quantifiable HI nor an excess cancer risk for nonradiological COCs. The incremental risk is determined by subtracting risk associated with background from potential COC risk. These numbers are not rounded before the difference is determined and therefore may appear to be inconsistent with numbers presented in tables and within the text. For conservatism, the background constituents that do not have quantified background screening concentrations are assumed to have a hazard quotient of 0.00. The incremental HI is 0.00 and the incremental estimated excess cancer risk is 4.49E-10 for the industrial land-use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs under an industrial land-use scenario.
For the radiological COC under the industrial land-use scenario, the incremental TEDE is 3.6E-3 mrem/yr, which is significantly less than EPA's numerical guideline of 15 mrem/yr. The incremental estimated excess cancer risk is 4.1E-8.

The calculated HI for the nonradiological COCs under the residential land-use scenario is 0.00, which is below numerical guidance. The estimated excess cancer risk is 2E-9. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental HI is 0.00 and the estimated incremental cancer risk is 1.95E-9 for the residential land-use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs under the residential land-use scenario.

The incremental TEDE for a residential land-use scenario from the radiological component is 9.3E-3 mrem/yr, which is significantly less than the numerical guideline of 75 mrem/yr suggested in the SNL/NM "RESRAD Input Parameter Assumptions and Justification" (SNL/NM February 1998). The estimated excess cancer risk is 1.2E-7.

VI.8 Step 7. Uncertainty Discussion

The determination of the nature, rate, and extent of contamination at DSS Site 1010 is based upon an initial conceptual model that was validated with sampling conducted at the site. The sampling was implemented in accordance with the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). The DQOs contained in these two documents are appropriate for use in risk assessments. The data from soil samples collected at effluent release points are representative of potential COC releases to the site. The analytical requirements and results satisfy the DQOs, and data quality was verified/validated in accordance with SNL/NM procedures. Therefore, there is no uncertainty associated with the data quality used to perform the risk assessment at DSS Site 1010.

Because of the location, history of the site, and future land use (DOE et al. September 1995), there is low uncertainty in the land-use scenario and the potentially affected populations that were considered in performing the risk assessment analysis. Based upon the COCs found in the near-surface soil and the location and physical characteristics of the site, there is little uncertainty in the exposure pathways relevant to the analysis.

An RME approach is used to calculate the risk assessment values. Specifically, the parameter values in the calculations are conservative and calculated intakes are probably overestimated. Maximum measured values of COC concentrations are used to provide conservative results.

Table 7 shows the uncertainties (confidence levels) in nonradiological toxicological parameter values. There is a combination of estimated values and values from the IRIS (EPA 2003), HEAST (EPA 1997a), EPA Regions 6, 9, and 3 (EPA 2002a, EPA 2002b, EPA 2002c), and Technical Background Document for Development of Soil Screening Levels (NMED December 2000). Where values are not provided, information is not available from the HEAST (EPA 1997a), IRIS (EPA 2003), Technical Background Document for Development of Soil Screening Levels (NMED December 2000), Risk Assessment Information System (ORNL 2003), or EPA regions (EPA 2002a, EPA 2002b, EPA 2002c). Because of the conservative nature of the RME approach, uncertainties in toxicological values are not expected to change the conclusion from the risk assessment analysis.
Risk assessment values for nonradiological COCs are within the acceptable range for human health under the industrial and residential land-use scenarios compared to established numerical guidance.

For the radiological COC, the conclusion of the risk assessment is that potential effects on human health for both the industrial and residential land-use scenarios are below background and represent only a small fraction of the estimated 360 mrem/yr received by the average U.S. population (NCRP 1987).

The overall uncertainty in all of the steps in the risk assessment process is not considered to be significant with respect to the conclusion reached.

VI.9 Summary

DSS Site 1010 contains identified COCs consisting of some inorganic, organic, and radiological compounds. Because of the location of the site, the designated industrial land-use scenario, and the nature of contamination, potential exposure pathways identified for this site include soil ingestion, dermal contact, and dust and volatile inhalation for chemical COCs, and soil ingestion, dust inhalation, and direct gamma exposure for radionuclides. The same exposure pathways are applied to the residential land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for nonradiological COCs show that for the industrial land-use scenario the HI (0.00) is significantly lower than the accepted numerical guidance from the EPA. The estimated excess cancer risk is 4E-10; thus, excess cancer risk is also below the acceptable risk value provided by the NMED for an industrial land-use scenario (Bearzi January 2001). The incremental HI is 0.00, and the incremental estimated excess cancer risk is 4.49E-10 for the industrial land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the industrial land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for nonradiological COCs show that for the residential land-use scenario the HI (0.00) is below the accepted numerical guidance from the EPA. The estimated excess cancer risk is 2E-9. Thus, excess cancer risk is below the acceptable risk value provided by the NMED for a residential land-use scenario (Bearzi January 2001). The incremental HI is 0.00 and the incremental estimated excess cancer risk is 1.95E-9 for the residential land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the residential land-use scenario.

The incremental TEDE and corresponding estimated cancer risk from radiological COCs are much less than EPA guidance values; the estimated TEDE is 3.6E-3 mrem/yr for the industrial land-use scenario, which is much less than the EPA's numerical guidance of 15 mrem/yr (EPA 1997b). The corresponding incremental estimated cancer risk value is 4.1E-8 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional control is 9.3E-3 mrem/yr with an associated risk of 1.2E-7. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1010 is eligible for unrestricted radiological release.
The excess cancer risk from the nonradiological and radiological COGs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18 (EPA 1997b). The summation of the nonradiological and radiological carcinogenic risks is tabulated in Table 11.

Table 11

Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1010, Building 6536 Septic System and Seepage Pit Carcinogens

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Nonradiological Risk</th>
<th>Radiological Risk</th>
<th>Total Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>4.49E-10</td>
<td>4.1E-8</td>
<td>4.1E-8</td>
</tr>
<tr>
<td>Residential</td>
<td>1.95E-9</td>
<td>1.2E-7</td>
<td>1.2E-7</td>
</tr>
</tbody>
</table>

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

VII. Ecological Risk Assessment

VII.1 Introduction

This section addresses the ecological risks associated with exposure to constituents of potential ecological concern (COPECs) in the soil at DSS Site 1010. A component of the NMED Risk-Based Decision Tree (NMED March 1998) is to conduct an ecological risk assessment that corresponds with that presented in EPA's Ecological RAGS (EPA 1997c). The current methodology is tiered and contains an initial scoping assessment followed by a more detailed risk assessment if warranted by the results of the scoping assessment. Initial components of NMED's decision tree (a discussion of DOOs, data assessment, and evaluations of bioaccumulation as well as fate and transport potential) are addressed in previous sections of this report. At the end of the scoping assessment, a determination is made as to whether a more detailed examination of potential ecological risk is necessary.

VII.2 Scoping Assessment

The scoping assessment focuses primarily on the likelihood of exposure of biota at, or adjacent to, the site to constituents associated with site activities. Included in this section are an evaluation of existing data with respect to the existence of complete ecological exposure pathways, an evaluation of bioaccumulation potential, and a summary of fate and transport potential. A scoping risk-management decision (Section VII.2.4) summarizes the scoping results and assesses the need for further examination of potential ecological impacts.
VII.2.1 Data Assessment

As indicated in Section IV, all COCs at DSS Site 1010 are at depths greater than 5 feet bgs. Therefore, no complete ecological exposure pathways exist at this site, and no COCs are considered to be COPECs.

VII.2.2 Bioaccumulation

Because no COPECs are associated with this site, bioaccumulation potential was not evaluated.

VII.2.3 Fate and Transport Potential

The potential for the COCs to migrate from the source of contamination to other media or biota is discussed in Section V. As noted in Table 6 (Section V), wind, surface water, and biota (food chain uptake) are expected to be of low significance as transport mechanisms for COCs at this site. Degradation, transformation, and radiological decay of the COC also are expected to be of low significance.

VII.2.4 Scoping Risk-Management Decision

Based upon information gathered through the scoping assessment, it is concluded that complete ecological pathways are not associated with COCs at this site. Therefore, no COPECs exist at the site, and a more detailed risk assessment was not deemed necessary to predict the potential level of ecological risk associated with the site.

VIII. References

RISK ASSESSMENT FOR DSS SITE 1010

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

NCRP, see National Council on Radiation Protection and Measurements.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanographic and Atmospheric Administration.

ORNL, Oak Ridge National Laboratory.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, See Sandia National Laboratories, New Mexico.

Yanicak, S. (Oversight Bureau, Department of Energy, New Mexico Environment Department), March 1997. Letter to M. Johansen (DOE/AIP/POC Los Alamos National Laboratory), "(Tentative) list of constituents of potential ecological concern (COPECs) which are considered to be bioconcentrators and/or biomagnifiers." March 3, 1997.

This page intentionally left blank.
APPENDIX 1
EXPOSURE PATHWAY DISCUSSION FOR CHEMICAL AND RADIONUCLIDE CONTAMINATION

Introduction

Sandia National Laboratories/New Mexico (SNL/NM) uses a default set of exposure routes and associated default parameter values developed for each future land-use designation being considered for SNL/NM Environmental Restoration (ER) Project sites. This default set of exposure scenarios and parameter values are invoked for risk assessments unless site-specific information suggests other parameter values. Because many SNL/NM solid waste management units (SWMUs) have similar types of contamination and physical settings, SNL/NM believes that the risk assessment analyses at these sites can be similar. A default set of exposure scenarios and parameter values facilitates the risk assessments and subsequent review.

The default exposure routes and parameter values used are those that SNL/NM views as resulting in a Reasonable Maximum Exposure (RME) value. Subject to comments and recommendations by the U.S. Environmental Protection Agency (EPA) Region VI and New Mexico Environment Department (NMED), SNL/NM will use these default exposure routes and parameter values in future risk assessments.

At SNL/NM, all SWMUs exist within the boundaries of the Kirtland Air Force Base. Approximately 240 potential waste and release sites have been identified where hazardous, radiological, or mixed materials may have been released to the environment. Evaluation and characterization activities have occurred at all of these sites to varying degrees. Among other documents, the SNL/NM ER draft Environmental Assessment (DOE 1996) presents a summary of the hydrogeology of the sites and the biological resources present. When evaluating potential human health risk the current or reasonably foreseeable land use negotiated and approved for the specific SWMU/AOC, aggregate, or watershed will be used. The following references generally document these land uses: Workbook: Future Use Management Area 2 (DOE et al. September 1995); Workbook: Future Use Management Area 1 (DOE et al. October 1995); Workbook: Future Use Management Areas 3, 4, 5, and 6 (DOE and USAF January 1996); Workbook: Future Use Management Area 7 (DOE and USAF March 1996). At this time, all SNL/NM SWMUs have been tentatively designated for either industrial or recreational future land use. The NMED has also requested that risk calculations be performed based upon a residential land-use scenario. Therefore, all three land-use scenarios will be addressed in this document.

The SNL/NM ER Project has screened the potential exposure routes and identified default parameter values to be used for calculating potential intake and subsequent hazard index (HI), excess cancer risk and dose values. The EPA (EPA 1989) provides a summary of exposure routes that could potentially be of significance at a specific waste site. These potential exposure routes consist of:

- Ingestion of contaminated drinking water
- Ingestion of contaminated soil
• Ingestion of contaminated fish and shellfish
• Ingestion of contaminated fruits and vegetables
• Ingestion of contaminated meat, eggs, and dairy products
• Ingestion of contaminated surface water while swimming
• Dermal contact with chemicals in water
• Dermal contact with chemicals in soil
• Inhalation of airborne compounds (vapor phase or particulate)
• External exposure to penetrating radiation (immersion in contaminated air; immersion in contaminated water; and exposure from ground surfaces with photon-emitting radionuclides)

Based upon the location of the SNL/NM SWMUs and the characteristics of the surface and subsurface at the sites, we have evaluated these potential exposure routes for different land-use scenarios to determine which should be considered in risk assessment analyses (the last exposure route is pertinent to radionuclides only). At SNL/NM SWMUs, there is currently no consumption of fish, shellfish, fruits, vegetables, meat, eggs, or dairy products that originate on site. Additionally, no potential for swimming in surface water is present due to the high-desert environmental conditions. As documented in the RESRAD computer code manual (ANL 1993), risks resulting from immersion in contaminated air or water are not significant compared to risks from other radiation exposure routes.

For the industrial and recreational land-use scenarios, SNL/NM ER has, therefore, excluded the following four potential exposure routes from further risk assessment evaluations at any SNL/NM SWMU:

• Ingestion of contaminated fish and shellfish
• Ingestion of contaminated fruits and vegetables
• Ingestion of contaminated meat, eggs, and dairy products
• Ingestion of contaminated surface water while swimming
• Dermal contact with chemicals in water

That part of the exposure pathway for radionuclides related to immersion in contaminated air or water is also eliminated.

Based upon this evaluation, for future risk assessments the exposure routes that will be considered are shown in Table 1.
Table 1
Exposure Pathways Considered for Various Land-Use Scenarios

<table>
<thead>
<tr>
<th>Pathway Description</th>
<th>Industrial</th>
<th>Recreational</th>
<th>Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion of contaminated drinking water</td>
<td>Ingestion of contaminated drinking water</td>
<td>Ingestion of contaminated drinking water</td>
<td></td>
</tr>
<tr>
<td>Ingestion of contaminated soil</td>
<td>Ingestion of contaminated soil</td>
<td>Ingestion of contaminated soil</td>
<td></td>
</tr>
<tr>
<td>Inhalation of airborne compounds (vapor phase or particulate)</td>
<td>Inhalation of airborne compounds (vapor phase or particulate)</td>
<td>Inhalation of airborne compounds (vapor phase or particulate)</td>
<td></td>
</tr>
<tr>
<td>Dermal contact (nonradiological constituents only) soil only</td>
<td>Dermal contact (nonradiological constituents only) soil only</td>
<td>Dermal contact (nonradiological constituents only) soil only</td>
<td></td>
</tr>
<tr>
<td>External exposure to penetrating radiation from ground surfaces</td>
<td>External exposure to penetrating radiation from ground surfaces</td>
<td>External exposure to penetrating radiation from ground surfaces</td>
<td></td>
</tr>
</tbody>
</table>

Equations and Default Parameter Values for Identified Exposure Routes

In general, SNL/NM expects that ingestion of compounds in drinking water and soil will be the more significant exposure routes for chemicals; external exposure to radiation may also be significant for radionuclides. All of the above routes will, however, be considered for their appropriate land-use scenarios. The general equation for calculating potential intakes via these routes is shown below. The equations are taken from "Assessing Human Health Risks Posed by Chemicals: Screening-Level Risk Assessment" (NMED March 2000) and "Technical Background Document for Development of Soil Screening Levels" (NMED December 2000). Equations from both documents are based upon the "Risk Assessment Guidance for Superfund" (RAGS): Volume 1 (EPA 1989, 1991). These general equations also apply to calculating potential intakes for radionuclides. A more in-depth discussion of the equations used in performing radiological pathway analyses with the RESRAD code may be found in the RESRAD Manual (ANL 1993). RESRAD is the only code designated by the U.S. Department of Energy (DOE) in DOE Order 5400.5 for the evaluation of radioactively contaminated sites (DOE 1993). The Nuclear Regulatory Commission (NRC) has approved the use of RESRAD for dose evaluation by licensees involved in decommissioning, NRC staff evaluation of waste disposal requests, and dose evaluation of sites being reviewed by NRC staff. EPA Science Advisory Board reviewed the RESRAD model. EPA used RESRAD in their rulemaking on radiation site cleanup regulations. RESRAD code has been verified, undergone several benchmarking analyses, and been included in the International Atomic Energy Agency's VAMP and BIOMOVS II projects to compare environmental transport models.

Also shown are the default values SNL/NM ER will use in RME risk assessment calculations for industrial, recreational, and residential land-use scenarios, based upon EPA and other governmental agency guidance. The pathways and values for chemical contaminants are discussed first, followed by those for radionuclide contaminants. RESRAD input parameters that are left as the default values provided with the code are not discussed. Further information relating to these parameters may be found in the RESRAD Manual (ANL 1993) or by directly accessing the RESRAD websites at: http://web.ead.anl.gov/resrad/home2/ or http://web.ead.anl.gov/resrad/documents/.
Generic Equation for Calculation of Risk Parameter Values

The equation used to calculate the risk parameter values (i.e., hazard quotients/HI, excess cancer risk, or radiation total effective dose equivalent [TEDE] [dose]) is similar for all exposure pathways and is given by:

\[\text{Risk (or Dose)} = \text{Intake} \times \text{Toxicity Effect (either carcinogenic, noncarcinogenic, or radiological)} \]

\[= C \times (CR \times \text{EFD/BW/AT}) \times \text{Toxicity Effect} \]

(1)

where;

- \(C \) = contaminant concentration (site specific)
- \(CR \) = contact rate for the exposure pathway
- \(\text{EFD} \) = exposure frequency and duration
- \(BW \) = body weight of average exposure individual
- \(AT \) = time over which exposure is averaged.

For nonradiological constituents of concern (COCs), the total risk/dose (either cancer risk or HI) is the sum of the risks/doses for all of the site-specific exposure pathways and contaminants. For radionuclides, the calculated radiation exposure, expressed as TEDE is compared directly to the exposure guidelines of 15 millirem per year (mrem/year) for industrial and recreational future use and 75 mrem/year for the unlikely event that institutional control of the site is lost and the site is used for residential purposes (EPA 1997).

The evaluation of the carcinogenic health hazard produces a quantitative estimate for excess cancer risk resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of the quantitative estimate with the potentially acceptable risk of 1E-5 for nonradiological carcinogens. The evaluation of the noncarcinogenic health hazard produces a quantitative estimate (i.e., the HI) for the toxicity resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of this quantitative estimate with the EPA standard HI of unity (1). The evaluation of the health hazard from radioactive compounds produces a quantitative estimate of doses resulting from the COCs present at the site. This estimated dose is used to calculate an assumed risk. However, this calculated risk is presented for illustration purposes only, not to determine compliance with regulations.

The specific equations used for the individual exposure pathways can be found in RAGS (EPA 1989) and are outlined below. The RESRAD Manual (ANL 1993) describes similar equations for the calculation of radiological exposures.

Soil Ingestion

A receptor can ingest soil or dust directly by working in the contaminated soil. Indirect ingestion can occur from sources such as unwashed hands introducing contaminated soil to food that is then eaten. An estimate of intake from ingesting soil will be calculated as follows:

\[I_s = C_s \times IR \times CF \times EF \times ED \]

\[\frac{BW \times AT}{BW \times AT} \]
where:

\[I_s = \frac{C_s \times IR \times EF \times ED \times (1/\text{VF or } 1/\text{PEF})}{BW \times AT} \]

- \(I_s \) = Intake of contaminant from soil inhalation (mg/kg-day)
- \(C_s \) = Chemical concentration in soil (mg/kg)
- \(IR \) = Inhalation rate (cubic meters [m³]/day)
- \(EF \) = Exposure frequency (days/year)
- \(ED \) = Exposure duration (years)
- \(VF \) = Soil-to-air volatilization factor (m³/kg)
- \(PEF \) = Particulate emission factor (m³/kg)
- \(BW \) = Body weight (kg)
- \(AT \) = Averaging time (period over which exposure is averaged) (days)

It should be noted that it is conservatively assumed that the receptor only ingests soil from the contaminated source.

Soil Inhalation

A receptor can inhale soil or dust directly by working in the contaminated soil. An estimate of intake from inhaling soil will be calculated as follows (EPA August 1997):

\[I_s = \frac{C_s \times IR \times EF \times ED \times (1/\text{VF or } 1/\text{PEF})}{BW \times AT} \]

where:

\[D_a = \frac{C_s \times CF \times SA \times AF \times ABS \times EF \times ED}{BW \times AT} \]

- \(D_a \) = Absorbed dose (mg/kg-day)
- \(C_s \) = Chemical concentration in soil (mg/kg)
- \(CF \) = Conversion factor (1E-6 kg/mg)
- \(SA \) = Skin surface area available for contact (cm²/event)
- \(AF \) = Soil to skin adherence factor (mg/cm²)
- \(ABS \) = Absorption factor (unitless)
- \(EF \) = Exposure frequency (events/year)
RISK ASSESSMENT FOR DSS SITE 1010

ED = Exposure duration (years)
BW = Body weight (kg)
AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Ingestion

A receptor can ingest water by drinking it or through using household water for cooking. An estimate of intake from ingesting water will be calculated as follows (EPA August 1997):

\[I_w = \frac{C_w \times IR \times EF \times ED}{BW \times AT} \]

where:

- \(I_w \) = Intake of contaminant from water ingestion (mg/kg/day)
- \(C_w \) = Chemical concentration in water (mg/liter [L])
- \(IR \) = Ingestion rate (L/day)
- \(EF \) = Exposure frequency (days/year)
- \(ED \) = Exposure duration (years)
- \(BW \) = Body weight (kg)
- \(AT \) = Averaging time (period over which exposure is averaged) (days)

Groundwater Inhalation

The amount of a constituent taken into the body via exposure to volatilization from showering or other household water uses will be evaluated using the concentration of the constituent in the water source (EPA 1991 and 1992). An estimate of intake from volatile inhalation from groundwater will be calculated as follows (EPA 1991):

\[I_w = \frac{C_w \times K \times IR_i \times EF \times ED}{BW \times AT} \]

where:

- \(I_w \) = Intake of volatile in water from inhalation (mg/kg/day)
- \(C_w \) = Chemical concentration in water (mg/L)
- \(K \) = Volatilization factor (0.5 L/m³)
- \(IR_i \) = Inhalation rate (m³/day)
- \(EF \) = Exposure frequency (days/year)
- \(ED \) = Exposure duration (years)
- \(BW \) = Body weight (kg)
- \(AT \) = Averaging time (period over which exposure is averaged—days)

For volatile compounds, volatilization from groundwater can be an important exposure pathway from showering and other household uses of groundwater. This exposure pathway will only be evaluated for organic chemicals with a Henry's Law constant greater than \(1 \times 10^{-5} \) and with a molecular weight of 200 grams/mole or less (EPA 1991).

Tables 2 and 3 show the default parameter values suggested for use by SNL/NM at SWMUs, based upon the selected land-use scenarios for nonradiological and radiological COCs.
respectively. References are given at the end of the table indicating the source for the chosen parameter values. SNL/NM uses default values that are consistent with both regulatory guidance and the RME approach. Therefore, the values chosen will, in general, provide a conservative estimate of the actual risk parameter. These parameter values are suggested for use for the various exposure pathways, based upon the assumption that a particular site has no unusual characteristics that contradict the default assumptions. For sites for which the assumptions are not valid, the parameter values will be modified and documented.

Summary

SNL/NM will use the described default exposure routes and parameter values in risk assessments at sites that have an industrial, recreational, or residential future land-use scenario. There are no current residential land-use designations at SNL/NM ER sites, but NMED has requested this scenario to be considered to provide perspective of the risk under the more restrictive land-use scenario. For sites designated as industrial or recreational land use, SNL/NM will provide risk parameter values based upon a residential land-use scenario to indicate the effects of data uncertainty on risk value calculations or in order to potentially mitigate the need for institutional controls or restrictions on SNL/NM ER sites. The parameter values are based upon EPA guidance and supplemented by information from other government sources. If these exposure routes and parameters are acceptable, SNL/NM will use them in risk assessments for all sites where the assumptions are consistent with site-specific conditions. All deviations will be documented.
Table 2
Default Nonradiological Exposure Parameter Values for Various Land-Use Scenarios

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Industrial</th>
<th>Recreational</th>
<th>Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Exposure Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure Frequency (day/yr)</td>
<td>$250^{a,b}$</td>
<td>$8.7 \text{ (4 hr/wk for } 52 \text{ wk/yr)}^{a,b}$</td>
<td>$350^{a,b}$</td>
</tr>
<tr>
<td>Exposure Duration (yr)</td>
<td>$25^{a,b,c}$</td>
<td>$30^{a,b,c}$</td>
<td>$30^{a,b,c}$</td>
</tr>
<tr>
<td>Body Weight (kg)</td>
<td>$70^{a,b,c}$</td>
<td>$70 \text{ Adult}^{a,b,c}$</td>
<td>$70 \text{ Adult}^{a,b,c}$</td>
</tr>
<tr>
<td>Averaging Time (days) for Carcinogenic Compounds (70 yr x 365 day/yr)</td>
<td>$25,550^{a,b}$</td>
<td>$25,550^{a,b}$</td>
<td>$25,550^{a,b}$</td>
</tr>
<tr>
<td>Averaging Time (days) for Noncarcinogenic Compounds (ED x 365 day/yr)</td>
<td>$9,125^{a,b}$</td>
<td>$10,950^{a,b}$</td>
<td>$10,950^{a,b}$</td>
</tr>
<tr>
<td>Soil Ingestion Pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion Rate (mg/day)</td>
<td>$100^{a,b}$</td>
<td>$200 \text{ Child}^{a,b}$</td>
<td>$200 \text{ Child}^{a,b}$</td>
</tr>
<tr>
<td>Inhalation Pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation Rate (m3/day)</td>
<td>$20^{a,b}$</td>
<td>15 Child^{a}</td>
<td>10 Child^{a}</td>
</tr>
<tr>
<td>Volatilization Factor (m3/kg)</td>
<td>Chemical Specific</td>
<td>Chemical Specific</td>
<td>Chemical Specific</td>
</tr>
<tr>
<td>Particulate Emission Factor (m3/kg)</td>
<td>$1.36E9^{a}$</td>
<td>$1.36E9^{a}$</td>
<td>$1.36E9^{a}$</td>
</tr>
<tr>
<td>Water Ingestion Pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion Rate (liter/day)</td>
<td>2.4^{a}</td>
<td>2.4^{a}</td>
<td>2.4^{a}</td>
</tr>
<tr>
<td>Dermal Pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Adherence Factor (mg/cm2)</td>
<td>0.2^{a}</td>
<td>0.2 Child^{a}</td>
<td>0.2 Child^{a}</td>
</tr>
<tr>
<td>Exposed Surface Area for Soil/Dust (cm2/day)</td>
<td>$3,300^{a}$</td>
<td>$2,800 \text{ Child}^{a}$</td>
<td>$2,800 \text{ Child}^{a}$</td>
</tr>
<tr>
<td>Skin Adsorption Factor</td>
<td>Chemical Specific</td>
<td>Chemical Specific</td>
<td>Chemical Specific</td>
</tr>
</tbody>
</table>

aTechnical Background Document for Development of Soil Screening Levels (NMED December 2000).

cExposure Factors Handbook (EPA August 1997).

ED = Exposure duration.

EPA = U.S. Environmental Protection Agency.

hr = Hour(s).

kg = Kilogram(s).

m = Meter(s).

mg = Milligram(s).

NA = Not available.

wk = Week(s).

yr = Year(s).
Table 3

Default Radiological Exposure Parameter Values for Various Land-Use Scenarios

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Industrial</th>
<th>Recreational</th>
<th>Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Exposure Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure Frequency</td>
<td>8 hr/day for 250 day/yr</td>
<td>4 hr/wk for 52 wk/yr</td>
<td>365 day/yr</td>
</tr>
<tr>
<td>Exposure Duration (yr)</td>
<td>25<sup>a,b</sup></td>
<td>30<sup>a,b</sup></td>
<td>30<sup>a,b</sup></td>
</tr>
<tr>
<td>Body Weight (kg)</td>
<td>70 Adult<sup>a,b</sup></td>
<td>70 Adult<sup>a,b</sup></td>
<td>70 Adult<sup>a,b</sup></td>
</tr>
<tr>
<td>Soil Ingestion Pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion Rate</td>
<td>100 mg/day<sup>c</sup></td>
<td>100 mg/day<sup>c</sup></td>
<td>100 mg/day<sup>c</sup></td>
</tr>
<tr>
<td>Averaging Time (days)</td>
<td>10,950<sup>d</sup></td>
<td>10,950<sup>d</sup></td>
<td>10,950<sup>d</sup></td>
</tr>
<tr>
<td>Inhalation Pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation Rate (m<sup>3</sup>/yr)</td>
<td>7,300<sup>d,e</sup></td>
<td>10,950<sup>e</sup></td>
<td>7,300<sup>d,e</sup></td>
</tr>
<tr>
<td>Mass Loading for Inhalation g/m<sup>3</sup></td>
<td>1.36 E-5<sup>d</sup></td>
<td>1.36 E-5<sup>d</sup></td>
<td>1.36 E-5<sup>d</sup></td>
</tr>
<tr>
<td>Food Ingestion Pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion Rate, Leafy Vegetables (kg/yr)</td>
<td>NA</td>
<td>NA</td>
<td>16.5<sup>c</sup></td>
</tr>
<tr>
<td>Ingestion Rate, Fruits, Non-Leafy Vegetables & Grain (kg/yr)</td>
<td>NA</td>
<td>NA</td>
<td>101.8<sup>b</sup></td>
</tr>
<tr>
<td>Fraction Ingested</td>
<td>NA</td>
<td>NA</td>
<td>0.25<sup>d</sup></td>
</tr>
</tbody>
</table>

^bExposure Factors Handbook (EPA August 1997).
^cEPA Region VI guidance (EPA 1996).
^dFor radionuclides, RESRAD (ANL 1993).
^eSNL/NM (February 1998).

EPA = U.S. Environmental Protection Agency.
g = Gram(s)
h = Hour(s)
kg = Kilogram(s)
m = Meter(s)
mg = Milligram(s)
NA = Not applicable
wk = Week(s)
yr = Year(s)
References

ANL, see Argonne National Laboratory.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

