H-SIP Inter-Domain SIP Mobility: Design

Chaouki T. Abdallah
Joud S. Khoury
Henry N. Jerez

Follow this and additional works at: https://digitalrepository.unm.edu/ece_fsp

Recommended Citation
H-SIP Inter-Domain SIP Mobility: Design

Joud S. Khoury ∗
Henry N. Jerez†
Chaouki T. Abdallah∗

School of Electrical and Computer Engineering, 1 University of New Mexico, Albuquerque, NM 87131-0001
{jkhoury, chaouki} @ece.unm.edu

†Corporation for National Research Initiatives, Reston, VA 20191
hjerez@cnri.reston.va.us

Abstract—Supporting mobility in IP networks is a crucial step towards satisfying the nomadic communication paradigms on the current Internet. The Session Initiation Protocol (SIP) presents one approach towards supporting IP mobility and is increasingly gaining in popularity as the next generation multimedia signaling and session establishment protocol. In this paper, we explore the design of an efficient approach to inter-domain SIP mobility in an attempt to improve personal and terminal mobility schemes. We apply a persistent identification framework to application level SIP addressing by introducing a level of indirection on top of the traditional SIP architecture. We show how this approach helps achieve efficient inter-domain authentication and call routing towards providing inter-domain mobility. This paper presents the design of H-SIP, while its implementation is described in a companion paper.

I. INTRODUCTION

Low cost, broader data services and deployment of high speed access networks are major drivers pushing service providers and enterprises to adopt packet switched multimedia communication as opposed to current circuit switched and Cellular alternatives. The industry has recently witnessed a rapid increase in the popularity and deployment of Voice over IP services. Enterprises and mobile operators are currently promoting simultaneous Cellphone/Wi-Fi access by introducing dual-mode phones that can switch between the cellular network and the IP packet switched network. Identity persistence issues become obvious and need to be addressed in this context. The Session Initiation Protocol (SIP) [1] and H.323 [2] are among the most widely adopted protocols for IP telephony. We focus in this paper on SIP, due to its simpler implementation and open collaboration. Additionally, SIP has been accepted by 3GPP as a signaling protocol and has been adopted by service providers like Verizon and Sprint to provide IP telephony, instant messaging and other data services. The widespread deployment of SIP is the premise of this paper, as we will leverage this idea to propose an efficient inter-domain mobility scheme for SIP environments.

The session initiation protocol (SIP) [1] is a signaling and control protocol for handling multimedia sessions, allowing the establishment and termination of media streams between two or more participants. The SIP architecture is proposed as an efficient candidate that can be reused to provide personal, terminal and session mobility [3], [4], [5], [6] with a readily available infrastructure. This avoids the redundancy introduced by simultaneous deployment with Mobile IP [7]. The successful reuse of SIP to support both multimedia communications and mobility simultaneously leverages the issues emanating from SIP users roaming across multiple SIP domains. SIP handles user location through the use of a Proxy/Location server that accepts user registration requests and updates the respective user location in a location repository. The protocol inherently implements location independence through the use of the uniform resource identifiers (URI) [8], which directly offers personal mobility. A URI acts as a location independent identifier abstracting the actual physical location of a user with respect to the system. So, SIP allows for personal mobility whether through the use of a Proxy that sets up the session between the calling parties or through the use of redirection servers. However, the protocol defines a user only within the domain boundaries of the service provider. A user must associate with a specific proxy server that handles user authentication as well as initial traffic routing. The proxy maintains a unique account for the user, who in turn, is expected to coordinate with that same proxy irrespective of his location. This requirement translates into undue loads on the SIP server and on a particular domain. Additionally, it complicates the coordination of roaming users who must communicate with a central proxy server while roaming. Despite the possible presence of Firewalls and other network restrictions on the foreign domain, roaming users are required to use the central home server instead of using the available local servers. Consequently, while URIs solve the location binding issue, they introduce the domain binding issue. Inefficient traffic routing is a direct consequence of such binding. Besides, the URI identification translates into users needing to be aware of each others’ current domain associations. It also brings up the complexity of satisfying calls when initiated from regular keypad terminals.

This paper addresses the inter-domain mobility issue by introducing an abstraction framework based on a unique and persistent identification mechanism. As far the paper is concerned, it only provides an approach that can enhance personal and terminal mobility [5] in current SIP architectures. As to session mobility, the readily available approaches like mid-call mobility [4] or enhancements to that [9] can be used. The framework we propose, referred to as the Handle-SIP or H-SIP, can seamlessly fit within the current SIP architecture allowing SIP users to transparently roam across different SIP domains. H-SIP may thus be gradually deployed.

User location and association are abstracted through the use of globally unique and persistent identifiers called handles
which are part of the Handle System [10], [11], [12], [13]. The Handle System is a distributed system extensively used as an indirect layer for the management of persistent Identifiers. Using the Handle System as an intermediate layer on top of multiple distributed SIP implementations allows us to implement seamless multi-domain authentication and call routing.

The rest of the paper details our proposed approach. Section 2 shows how H-SIP is efficiently used to enhance inter-domain SIP mobility. In this section we present a detailed explanation of the proposed inter-domain authentication, registration and call routing mechanisms. In section 3, we describe our conclusions.

II. SIP INTER-DOMAIN MOBILITY

A. Sessions and Mobility

We present an example to clarify the SIP inter-domain mobility problem. Recall that SIP defines a user as an entity that associates with a particular domain. Figure 1 depicts a simple scenario of a roaming user r_user who has a valid association with his home domain hdomain but is currently present in a foreign domain fdomain. SIP signaling traffic originating from (REGISTER) or terminating at (arrows 1,2,3: arbitrary SIP user trying to INVITE the roaming user) r_user must inefficiently pass through his home proxy server. Figure 1 identifies this traffic as traditional traffic flow. There are several ways in which roaming issues can be addressed, depending on whether the SIP architecture is roaming-unaware or modified to become roaming-aware. We study these issues and we present our approach by showing a typical flow for INVITE and REGISTER requests. We also compare the different approaches and illustrate the different scenarios in Figure 2.

- The first scenario shows how SIP naturally handles a call flow for a roaming user. A data flow is presented in Figure 2A. In this case, no roaming logic is injected into the system (system is roaming-unaware). All requests to/from the roaming user must go through the central home proxy server. The home proxy thus treats both roaming and non-roaming users equally and portrays a roaming user as merely a home domain user registering with a foreign contact address. Clearly, if the user is present in another country, his traffic would still have to go through his central home proxy (triangle routing) as depicted in Figure 2A, despite the availability of a local proxy server in the foreign domain (Foreign Server). This results into significant delays that are not accepted for time sensitive applications. Even with SIP mobility management (SIPMM) [3], [4] support (personal, terminal and session mobility) enabled, the same scenario occurs. SIP Mobility allows a user to roam between subnets and domains maintaining accessibility and session continuation using pre-call and mid-call mobility signaling. With pre-call signaling, the mobile user will re-REGISTER with the home proxy anytime his IP address changes. With mid-call signaling, the mobile user will negotiate an address change with the correspondent user while the session is in progress using re-INVITE messages. Mid-call mobility assumes a session is already in progress between the calling parties. Inefficient pre-call traffic routing, and service centralization, are obvious limitations that users roaming in these traditional and Mobile SIP environments have to suffer from. This is the same case also for Mobile IP with Location Registers (MIP-LR) [14], [15], whereas here the SIP proxy servers are replaced with location registers. We argue that our proposed approach to roaming and inter-domain mobility in general, can significantly enhance the SIP personal and terminal mobility performance. Additionally since our approach addresses SIP personal and terminal mobility, we can improve the pre-call portion of any SIP session mobility scheme while other features like mid-call mobility can remain unchanged. For mid-call mobility, current proposals like MIP-LR, SIPMM, or a combination of these two [16] can be used. These approaches implement mid-call mobility by sending binding updates directly to correspondent nodes without going through Home Agents. Mobile IP (MIP) [7], however, uses Home Agents to forward traffic which creates triangular routing issues. An enhanced version of MIP is MIPv6 [17] that avoids triangular routing and implements route optimization. As to the simultaneous mobility issue, discussed lately in [18], it is left for a future paper to offer a secure framework for simultaneous mobility in the context of H-SIP.

- A second scenario is that of a SIP roaming-aware approach such as the one proposed by Double User Agent Servers [19], that mimics the roaming solution employed in the telecommunication environments. In other words, a user who is roaming outside his home domain, registers with a foreign server. The latter consults the user’s home server for redirection, authentication and billing, and proceeds to process the user’s transactions. Correspondent users trying to communicate with the roaming user will have to go through his home proxy server which in turn redirects them to the foreign proxy where the
user is currently located. Hence, significant signaling overhead results primarily due to the nature of the SIP URI. The URI is composed of a domain part, like in r_user@hdomain, thus forcing the calls directed to this user to go through the hdomain proxy server first. The data flow for this scenario is presented in Figure 2B. We argue that this approach is inefficient as it introduces unnecessary overhead and load on the original server.

Security is a crucial property of the Handle System. The system acts as a certification authority ensuring that attributes of the name/reference are securely transferred between the communicating ends. Hence, the Handle System allows for secure name resolution and administration in a distributed fashion making it highly scalable and suitable to operate in mobile environments. In our approach, elements of the SIP architecture, SIP users and proxy servers, are identified with handles abstracting any domain binding. Users will identify each other, and identify the SIP servers they associate with using handles instead of URIs and domain names respectively. In Figure 1 the roaming user r_user will have his own handle 2118/r_user with the necessary administrative privileges over the handle. Additionally, the home proxy server has a handle 2118/hproxy, and the foreign proxy server has a handle 10.200/fproxy. Note that a handle has the form “prefix/suffix”. The prefix represents the naming authority (NA) while the suffix represents a unique local name under the NA namespace [10], thus rendering the handle globally unique. A possible realization of the handle 2118/r_user inside the Handle System is depicted in Figure 3. The handle has several fields. The HS_ADMIN and HS_VLIST fields determine the administrators of the handle who are the naming authority (0.NA/2118), the handle itself (2118/r_user) and the two proxy servers in the HS_VLIST field. Any of these administrators has the privilege to modify the fields inside the handle provided the administrator succeeds to authenticate with the Handle System using his private key.

B. H-SIP: Abstraction layer

Our proposed approach uses handles as globally unique identifiers to locate and identify SIP architectural elements. This abstraction allows the system to route calls independent of user location and domain association. We refer to the modified SIP framework as the Handle-SIP or H-SIP. Note that we have also exploited this abstraction approach at the level of network devices and services in [20], [21]. Briefly, the Handle System [10], [11], [12], [13] is intended to be a means of universal basic access to registered digital objects [22]. It provides a distributed, secure and global name service for administration and resolution of handles over the Internet. A handle is a persistent name that can be associated with a set of attributes. Some of these attributes can describe location, permissions, administrators and state. The fact that handles are defined independently of any of the attributes or public keys of the underlying objects, makes them persistent identifiers [23]. These identifiers are managed and resolved using a secure global name service that guarantees the association of the identifier with its respective attributes over distributed communication.

In the two scenarios above, the use of URIs to identify users and the inherent dependence of the URI on a particular domain, complicates message routing. One solution is to abstract the actual identifier eliminating per-call coordination to minimize the signaling traffic in highly mobile environments.

C. Authentication and Registration

Currently, the most common authentication mechanism employed by SIP is the digest authentication [24] used by HTTP. When a user associates with a domain proxy server, he obtains an account on that server with a username and password which
he uses to authenticate himself to the server if asked to. The digest authentication depicted here is domain dependent i.e. the user’s credentials are valid for a particular domain. Briefly, digest authentication proceeds as follows:

1) User sends a REGISTER request to a SIP proxy/registrar server.
2) The server replies with a 401 unauthorized response message challenging the user to authenticate himself for the requested service (realm) through a user and password prompt.
3) The user sends back a message digest of his credentials, which include his username, password etc.
4) The same message digest is computed internally using the server’s internal user information and compared to the one sent by the user.
5) Authentication is granted if the two digests match.
6) User registers with the SIP proxy/registrar server.

In our approach, we still use digest authentication for the SIP users due to its wide support by current SIP servers and user agents, although a better authentication mechanism can be designed that would leverage the inherent security that handles expose.

Access to the authentication information is controlled inside the Handle System by the users. Recall that each user owns and administers his own handle. As part of this process, the user specifies in the HS_VLIST field, the set of handles that have administrative rights over his handle. Among these handles, the user should include handles of any SIP proxy server that he wishes to register with, which could be any foreign server(s) that he trusts.

Two approaches can be exploited to implement the logic needed by the current SIP architecture for supporting handle authentication and registration. The first is to modify the actual SIP servers by extending their functionality through a server plug-in. This approach requires absolutely no changes to the current User Agent devices whether hardphones or softphones. The devices will adapt seamlessly to the system. Alternatively, a second approach would be to modify the User Agent devices instead, which is a more cumbersome task that would require software upgrades for all existing User Agents.

This paper implements the first approach that deals with extending the functionality of the proxy/registrar servers. We present the proposed solution in light of the reference example of Figure 1. In Figure 3, the roaming user 2118/r_user has granted both SIP proxy servers 2118/hproxy and 10.200/fproxy administrative rights over his handle. Note that the VLIST could refer to another handle containing a list of globally trusted servers. For the roaming user r_user present in the foreign domain fdomain, the authentication/registration process with the foreign proxy server 10.200/fproxy, depicted in Figure 2 [C and Figure 1](proposed traffic flow, arrows a,b,c,d), proceeds as follows:

1) r_user, after including the handle 10.200/fproxy in his handle HS_VLIST field, sends a REGISTER request to hproxy.
2) hproxy challenges r_user to authenticate himself.
3) r_user uses same digest authentication with username as the handle 2118/r_user and password as the value of the SIP_PWD field that he created in his handle as shown in Figure 3.
4) fproxy uses the Handle Protocol [12] to resolve the handle 2118/r_user into the SIP_PWD field. The server then computes a message digest over the obtained credentials.
5) Authentication is granted if the two digests match.
6) After authenticating 2118/r_user, the foreign proxy fproxy proceeds to create an internal account for r_user to be able to use the SIP services on fproxy. The internal user account will have a username identical to the handle of the registering user with the ‘˜’ replaced by ‘ ’ i.e. 2118/r_user in this case.
7) Registration of the user follows. This requires that fproxy modifies the handle 2118/r_user updating the field SIP_URL to point to the internal account, 2118.r_user@x.y.z.w in this case, as shown in Figure 3. This means that r_user is currently associated with fproxy.

Obviously, our modified authentication algorithm is domain independent. In other words, the user’s credentials are valid for all realms provided the correct administrative privileges are set in the Handle System. This property is essential, as it allows a particular authenticated SIP message to traverse multiple domains instead of requiring re-authentication for each domain on the path of the message. Since all communication between the Proxy and the Handle System is secure [12], the proxy can be reasonably certain that the roaming user is indeed who he claims to be by validating his credentials against the secure handle. Internally, the proxy server monitors the user accounts created and removes an account (also updating the handle) due to unregister requests or account expiration. A sample handle for the foreign proxy is shown in Figure 4. Devices, whether hardphones and softphones are treated similarly. This depends on the ability of the device owner to present the SIP proxy with a username (could be the handle) and password for authentication. With this approach, a user does not need to register with a home proxy server as would otherwise be required by pre-call mobility [4]. After registering with the foreign server, the user’s handle-to-URI mapping remains fresh allowing correspondent users to reach him simply by addressing his handle as we will show in the section II-D.

D. Routing

After abstracting any domain binding from users and allowing seamless authentication and registration with local proxy
servers, the next step is to permit the user to initiate and receive calls by addressing a particular handle with no explicit reference to domain bindings (URIs). In this sense, a SIP user can INVITE any other SIP user provided he knows the latter’s handle. From the perspective of a user, all other users seem to belong to one local domain and abstraction is complete. To explain how the call routing is achieved, we will go through the steps where an arbitrary SIP user \(c_{\text{user}} \) (caller) tries to INVITE the roaming user \(r_{\text{user}} \) (callee) using the latter’s handle \(2118/r_{\text{user}} \) as shown in Figure 1. The call routing process, presented in Figure 2C, proceeds as follows:

1) Caller \(c_{\text{user}} \) sends an INVITE request to \(r_{\text{user}} \). The invite request reaches the caller’s SIP proxy/registrar containing the following header fields:

```
INVITE sip:2118~r_user@somedomain SIP/2.0
To:<sip:2118~r_user@somedomain>
```

Note that in this message, the domain somedomain is irrelevant to our approach. We are only concerned with the handle part of the Request-URI. To distinguish between handle and non-handle requests, we resort to the ‘/’ character in the host name.

2) Proxy checks if the handle \(2118/r_{\text{user}} \) is a locally registered user. If not, the server resolves the handle into the SIP URL field which is \(2118/r_{\text{user}}@x.y.z.w \) in this case as shown in Figure 3.

3) The server then rewrites the target URI of the message to the resolved URI.

4) From this point on, the natural SIP call flow is leveraged and the traditional SIP architecture [1] is utilized for efficient call routing. Note that other proxy servers on the call path treat the request as a normal request i.e. no handle resolution is required.

Again, with our approach, correspondent users trying to communicate with the mobile user need not go through a home proxy for session setup or redirection. This renders the call route more efficient eliminating unnecessary overhead and significant round-trip times. One last point worth mentioning is the ability of a user to register with multiple servers from different devices simultaneously using the same handle. In our implementation, the SIP_URL field of a particular handle can contain a list of bindings (URIs) to enable this attractive property. Exploiting this property is left for future papers.

III. CONCLUSIONS

In this paper, we have outlined the use of an indirection architecture based on the Handle System to address SIP inter-domain mobility. Our approach not only enables roaming controlled by the users rather than organizations, but also provides a faster implementation than traditional approaches currently deployed. Throughout our work, users are able to dynamically enable their own mobility and benefit from the advantages of a secure distributed persistent identifier network. By disassociating users from DNS domains, while still providing the means to interact with traditional SIP systems, we provide a scalable interchangeable enhancement to the SIP infrastructure. In part II [26], we describe the implementation details of our architecture.

REFERENCES

[24] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Lu-
