Foraging decisions in a patchy environment

Eric Charnov

Follow this and additional works at: https://digitalrepository.unm.edu/biol_fsp

Part of the Biology Commons

Recommended Citation
Current Contents 44:22 (1989)
Natural selection is used to justify an economic approach to foraging behavior. A predator visiting a series of patches, where its own presence depresses the local food availability, should leave each patch when the intake rate within the patch drops to the average rate over all patches. [The SC* indicates that this paper has been cited in over 400 publications.]

Foraging Decisions in a Patchy Environment

Eric L. Charnov
Department of Biology
University of Utah
Salt Lake City, UT 84112

April 11, 1989

My involvement with foraging decision theory was motivated by Gordon H. Orians: the specific catalyst was a lecture he gave in his advanced ecology class in the winter of 1971 at the University of Washington. Orians lectured about the pioneering work by J.M. Emlen and R.H. MacArthur and E.R. Pianka done five years before: the treatment of predatory decisions in an economic framework. The form of the question intrigued me. Although I found the original papers fairly difficult to understand, Orians’s message was to challenge me to go beyond them. My association at that time with both Orians and John R. Krebs provided the necessary impetus. Krebs criticized the classical work from the viewpoint of an experimental animal behaviorist; in short, he said that the concepts must make predictions that are both interesting and experimentally testable. He claimed that the earlier work failed to meet these criteria.

My resulting 1973 doctoral thesis dealt with several questions in predator economics: use of a patchy environment (this paper) and diet breadth were the main areas. A simplified version of the “marginal value” result (tied to some experiments with J. Ryan and Krebs), the results of which were “just good enough” to suggest that we were on the right track was published in 1974.1 A later paper with Orians2 explored in greater detail the possible reasons prey may become less locally available the longer a predator stays in any fixed location. I think these papers were widely cited because they satisfied Krebs’s dictum of making interesting, testable, experimental predictions. The diet breadth theory3,4 did likewise and again involved early experiments with Krebs.5 Interestingly, Earl E. Werner, in his PhD thesis, formulated independently a version of the diet breadth theory for size selection of prey in fish. He provided experimental tests,6 and his work has had an immense impact in the field of aquatic ecology.

The most highly cited papers in foraging ecology tend to fall into one or more of three classes; the originals that put new questions on the table,1,2,3,4,5,6,7 early work that blended theory with hard data and suggested that the exercise was worth pursuing,5,6,7,8 and a few overview (not just review) papers that discussed the broad implications of the economic approach.6,11,12 Any scientific work that profoundly stimulates a field is bound to become quickly dated, and the above-mentioned works are no exceptions. The recent book by D.W. Stephens and Krebs12 shows what these early formulations got turned into.


