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Abstract

A common statistical problem is that of finding the median element in a set of data. This paper presents an effi-
cient randomized high-level parallel algorithms for finding the median given a set of elements distributed across
a parallel machine. In fact, our algorithm solves the general selection problem that requires the determination of
the element of rank, for an arbitrarily given integek.

Our general framework is an SPMD distributed memory programming model that is enhanced by a set of com-
munication primitives. We use efficient techniques for distributing and coalescing data as well as efficient combi-
nations of task and data parallelism. The algorithms have been coded in the message passing standard MPI, and
our experimental results from the IBM SP-2 illustrate the scalability and efficiency of our algorithm and improve
upon all the related experimental results known to the authors.

Keywords
Selection Algorithm, Randomized Algorithms, Parallel Algorithms, Experimental Parallel Algorithmics



UNM Technical Report: EECE-TR-99-005

1 Introduction

Given a set of datX with |X| = n, the selection problem requires the determination of the element withkrank
(that is, thekt smallest element), for an arbitrarily given inteeMedian finding is a special case of selection

with k= 3. In previous work, we have designed deterministic and efficient parallel algorithms for the selection
problem on current parallel machines [5, 6, 3]. In this paper, we discuss a new UltraFast Randomized algorithm
for the selection problem which, unlike previous research (for example, [11, 12, 15, 8, 14, 13, 16, 19, 18, 17]),
is not dependent on network topology or limited to the PRAM model which does not assign a realistic cost for
communication. In addition, our randomized algorithm improves upon previous implementations on current par-
allel platforms, for example, Al-Furaih et al. [2] implement both our deterministic algorithm and the randomized
algorithms due to Rajasekaran et al. [15, 13] on the TMC CM-5.

The main contributions of this paper are

1. New techniques for speeding the performance of certain randomized algorithms, such as selection, which
are efficient with likely probability.

2. A new, practical randomized selection algorithm (UltraFast) with significantly improved convergence.

The remainder of this paper is organized as follows. Both our new and Rajasekaran’s randomized selection
algorithms are detailed in Section 2, followed by analysis and experimental results in Section 3. Additional
information on Chernoff Bounds is located in Appendix A. More extensive statistics from our experiments are
reported in [4].

2 Parallel Selection

The selection algorithm for rarkassumes that input da¥aof sizen is initially distributed evenly across the
processors, such that each processor h@lelhements. Note that median finding is a special case of the selection
problem wherek is equal to[3]. The output, namely the element frowith rankk, is returned on each
processor.

The randomized selection algorithm locates the element of kdnkpruning the set of candidate elements
using the following iterative procedure. Tveplitter elementgki, ky) are chosen which partition the input into
three groupsGo, G1, andGy, such that each element @y is less thark;, each element iy lies in [k, ko],
and each in3; is greater thark,. The desire is to have the middle groGp much smaller than the outer two
groups(|G1| < |Gol,|Gz|) with the conditionthat the selection index lies within this middle group. The process
is repeated iteratively on the group holding the selection index until the size of the group is “small enough,”
whereby the remaining elements are gathered onto a single processor and the problem is solved sequentially.

The key to this approach is choosing splitteysandk, which minimize the size of the middle group while
maximizing the probability of theonditionthat the selection index lies within this group. Splitters are chosen
from a random sample of the input, by finding a pair of elements of certain rank in the sample (see Section 3).
The algorithm of Rajasekaran and Reif [15, 13] takes a conservative approach which guarantees the condition
with high probability. We have discovered a more aggressive technique for pruning the input space by choosing
splitters closer together in the sample while holding the condition with likely probability. In practice, the condition
almost always holds, and in the event of a failure, new splitters are chosen from the sample with a greater spread
of ranks until the condition is satisfied.

In addition, we improve upon previous algorithms in the following ways.

1. Stopping Criterion. For utmost performance, current parallel machines typically require a coarse gran-
ularity, the measure of problem size per node, because communication is typically an order of magnitude
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slower than local computation. In addition, machine configurations tend to be small to moderate in terms
of number of processor). Thus, a stopping criterion of problem sizep? is much too fine grained for
current machines, and we suggest, for instance, a stopping size 0pn&96). Whenp is small and

n= O(pz), a second practical reason for increasing the stopping size is that the sample is very limited and
might not yield splitters which further partition the input.

2. Aggressive ConvergenceAs outlined in Section 3, our algorithm converges roughly twice as fast as the
best known previous algorithm.

3. Algorithmic Reduction. At each iteration, we use “selection” to choose the splitters instead of sorting, a
computationally harder problem.

4. Communication Aggregation Similar collective communication steps are merged into a single operation.
For instance, instead of calling ti@®mbine primitive twice to find the size of grousy andG; (|G| can
be calculated from this information and the problem size), we aggregate these operations into a single step.

Next we outline our new UltraFast Randomized Selection Algorithm, followed by the Fast Randomized algo-
rithm.
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2.1 UltraFast Randomized Selection Algorithm
An SPMD algorithm on each procesg$er

Algorithm 1 UltraFast Randomized Selection Algorithm

Input:

{ n} - Total number of elements

{ p } - Total number of processors, labeled from Qote 1
{Li } - List of elements on processBr, where|L;| = %
{C} - A constant~ max p?,4096)

{ €} - log, of the sample size (e.g-®)

{ A* } - selection coefficient (e.g..Q)

{ k } - selection coefficient multiplier (e.g.25)

rank - desired rank among the elements

begin
Step 0.Setn; = %.
While (n > C)
Step 1.Collect a sampl& from L; by pickingn; ”—: elements at random da.
Step 2.S= Gather(S, p).
Setz= TRUE andA = A*.
While (z= TRUE)
OonPy
Step 3.Selectky, ko from Swith ranks{@ — A\/@J and [@ +A\/§J .
Step 4.Broadcask; andks.
Step 5. PartitionL; into < k; and([ky, kz], and> kp, to give countdess middle (andhigh). Only
save the elements which lie in the middle patrtition.
Step 6.Cess= Combine(less+);  cmig = Combine(middle +);
Step 7.If (rank € (Ciess, Ciess+ Cmid] )
N=Cmnig ; Ni=middle ; rank=rank—cess ; z= FALSE
Else
OnPy: A=k-A
Endif
Endwhile
Endwhile
Step 8.L = Gather(L;).
Step 9.0n Py
Perform sequential selection to find elemgumif rankin L;
result= Broadcastq).

end
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2.2 Fast Randomized Selection Algorithm

This algorithm is due to Rajasekaran and Reif [15, 13], and implemented by Al-furaih et al. [2].
An SPMD algorithm on each process#r

Algorithm 2 Fast Randomized Selection Algorithm

Input:

{ n} - Total number of elements

{ p } - Total number of processors, labeled from (pte 1
{'L; } - List of elements on processBr, where|L;| = %

{ €} - log, of the sample size (e.g-®)

rank - desired rank among the elements

|=0;r= % -1

begin
while (n > p?)
Step 0.Setnj=r—1+1
Step 1.Collect a samplé& from L;[l,r] by pickingn ”—: elements at random df betweerl andr.
Step 2.S= ParallelSort(S, p).
On Po
Step 3.Pickkj, ky from Swith ranks[@ —-/I9 Iogen1 and [@ + /]9 log, n1 .
Step 4.Broadcask; andkz. Therankto be found will be infks, ko] with high probability.
Step 5.PartitionL; betweer andr into < kg, [ki,kz], and> k; to give countdess middle andhigh, and
splitterssy ands; .
Step 6.Cmig = Combine(middle +).
Step 7.Ciess= Combine(less+).
Step 8.1f (rank € (Ciess, Cmid] )
N=Cnig ; | =51 ; r=% ; rank=rank— Cess
Else
If (rank < Ciess)
=S5 ; N=Cess
Else
N=nN-— (CesstCmid) ; | =% ; rank=rank— (Cess+ Cmid)
Endif
Endif
Endwhile
Step 9.L = Gather(L;[l,r]).
Step 10.0nPy
Perform sequential selection to find elemgmtf rankin L,
result= Broadcastq).

end



UNM Technical Report: EECE-TR-99-005

3 Analysis

The following sampling lemma from Rajasekaran [15] will be used in the analysis.

LetS={vi,V2,...,Vs} be a random sample from a s€bf cardinalityn. Also, letvy,v;,...,V; be the sorted
order of this sample. If; is the rank ofk{ in X, the following lemma provides a high probability confidence
interval forr;j.

Lemma 1 For everya, Pr (|ri —ig> \/SG%\/Iogen) <n @,

Thus, ifk; andky are chosen as the splitters from sampleSbly selecting the elements with rariﬁ<—
d,/slog,n and‘ﬁS +d,/slog.n, respectively, and = v/4a, then the element of desired rank will lie in the middle
partition (Ciess, Cless+ Cmig] With high probability(1—n—).

A tradeoff occurs between the size of the middle partitiorand the confidence that the desired element lies

within this partition. Note that in the Fast Randomized algorithgn, wlith 1, this probability is - n*%, and
r< 8%3, /logeN. Sinces~ ¢, this can be approximated Iby< 8n'~3, /log,n.

Suppose now the bound is relaxed with probability no less tham1* = p. Thena = —'oﬁ’ét;p), and the
splittersky, ko can be chosen with ranks— A,/sand® +A,/5, for A = 2,/~log.(1 - p) (see Table ). Then the
size of the middle partition can be bounded similarlyrby 16%5\/m. This can be approximated by
r < 16n'~3,/~log,(1— p). Thus, the middle partition size of the UltraFast algorithm is typically smaller than
that of the Fast algorithm, whenever the condition (1 —p)~4.

A Lower bound of capturey( in %)
6.07 99.99
5.26 99.9
4.29 99.0
3.03 90.0
2.54 80.0
2.19 70.0
1.91 60.0
1.50 43.0
1.00 22.1
0.50 6.05

Table I: Lower bound of the capture probability) (that the selection index is in the middle partition, where
A2
p=1—-e7.

A large value foe increases running time since the sample (of sfaenust be either sorted (in Fast) or have
elements selected from it (in UltraFast). A small value @icreases the probability that both of the splitters lie
on one side of the desired element, thus causing an unsuccessful iteration. In pra&t&an@Gppropriate value
for e [2].

3.1 Complexity

We use a simple model of parallel computation to analyze the performance of these two selection algorithms.
Current hardware platforms can be viewed as a collection of powerful processors connected by a communication
network that can be modeled as a complete graph on which communication is subject to the restrictions imposed
by the latency and the bandwidth properties of the network. We view a parallel algorithm as a sequence of local
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computations interleaved with communication steps, and we allow computation and communication to overlap.
We account for communication costs as follows.

The transfer of a block consisting af contiguous words, assuming no congestion, tak@s+®m) time,
wheret is an bound on the latency of the network ana the time per word at which a processor can inject or
receive data from the network.

One iteration of the Fast randomized selection algorithm tal(eéj@r (t+0)log p) time, wheren(l) is the

maximum number of elements held by any processor during iteratibrom the bound on the size of the middle
partition, we find a recurrence on the problem size during iteration

No = Nn (1)
N < 8nd’y/logeni ,

which shows a geometric decrease in problem size per iteration, and tflag)dgn) iterations are required.
Sincent) = O(%), Fast selection requires

O(%Iog logn+ (t+ o) logplog Iogn) (2)

time. (Assuming random data distribution, the running time reduces(%he(T +o)logplog Iogn) ) [2]

Each iteration of the UltraFast algorithm is similar to Fast, except sorting is replaced by sequential selection,
which takes linear time [9]. Also, the problem size during iteratigmbounded with the following recurrence,

No = n
N+ < 16n7y/=loge(1-p) , ©

and similar to the Fast algorithm, UltraFast as well requiréle@ogn) iterations. Thus, UltraFast randomized
selection has a similar complexity, with a worst case running time given in Eq. (2). As we will show later
by empirical results in Table Ill, though, the constant associated with the number of iterations is significantly
smaller for the UltraFast algorithm.

3.2 Experimental Data Sets

Empirical results for the selection algorithm use the following three inputs. Given a problem of aimbap
processors,

e [I] - Identical element$0,1,..., % — 1} on each processor,
e [S] - Sorted element§0, 1,...,n— 1} distributed inp blocks across the processors, and
¢ [R] - Random, uniformly distributed, elements, wghelements per processor.

e [N] - This input is taken from the NAS Parallel Benchmark for Integer Sorting [7]. Keys are integers in
the rang€l0,2'%), and each key is the average of four consecutive uniformly distributed pseudo-random
numbers generated by the following recurrence:

Xki1 = a% (mod 2°)

wherea = 513 and the seegy = 314159265. Thus, the distribution of the key values is a Gaussian approx-
imation. On ap-processor machine, the fir%tgenerated keys are assignedothe next% to P1, and so
forth, until each processor h%skeys.
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3.3 Empirical Results

Results for a previous implementation of the Fast randomized selection algorithm on the TMC CM-5 parallel
machine appear in [2]. However, this machine is no longer available and does not support the current message
passing standafdPI. Therefore, we have recoded this algorithm into MPI.

n p || [RJandom Input|| [S]orted Input
CM-5] SP-2[[ CM-5] SP-2
4 174 68.0 194 | 104
512K | 8 105 62.7 119| 79.6
16 69.5 395 86.7| 61.9

4 591 153 601 | 229
2M | 8 318 108 359 | 182
16 193 74.4 237 | 136
Table II: Comparison of the execution time of the Fast Randomized Selection Algorithm on TMC CM-5 [1, 2]
and IBM SP-2-TN (in milliseconds).

Table Il compares the execution time of the Fast Randomized algorithm on both the CM-5 [1, 2] and the
SP-2. Since selection is computation-bound, we would expect the performance to be closely related to the node
performance of these two machines. The SP-2-TN 66MHz POWER?2 processor is roughly twice as fast as the
CM-5 33 MHz RISC processor. As expected, this factor of two performance improvement is apparent in the
execution time comparison for equivalent machine and problem sizes. In actuality, the SP-2 is more than twice
as powerful, since communication latency and bandwidth are improved roughly by a factor of three.

We conducted experiments with our UltraFast and the known Fast randomized selection algorithms on an
IBM SP-2 with four, eight, and sixteen processors, by finding the median of each input in the previous section
for various problem sizes (ranging betweerK1i® 16\ elements). A comparison of the empirical execution
times for machine configurations pf= 4,8, and 16 processors are graphed using log-log plots in Figures 1, 2,
and 3, respectively. In all cases, the UltraFast algorithm is substantially faster than the Fast randomized selection
algorithm, typically by a factor of two. Running time can be characterized maingllbgp and is only slightly
dependent on input distribution.

For p = 8, Table Il provides a summary of the number of times each algorithm iterates. While the Fast
algorithm typically iterates in the neighborhood of about 25 times, there are cases when it iterates hundreds or
even thousands of times. However, the UltraFast algorithm never iterates more then three times. This is due
to two reasons. First, UltraFast converges roughly twice as fast as the Fast algorithm. Second, the algorithm
stops iterating by using a more realistic stopping criterion matched to the coarse granularity of current parallel
machines. In addition, whemis small anch= O(pz), the Fast algorithm’s sample is very limited and sometimes
does not yield splitters which further partition the input. Thus, in this situation, the Fast algorithm might iterative
from tens to thousands of times before pruning any additional elements from the solution space.

Detailed results from the UltraFast and Fast algorithms (foflihdS], and[R] inputs) forn = 512K, 1M,
2M, 4M, and 8M, and further statistics from tfd] input, are available in [4]

4 Future Directions

We are investigating other combinatorial algorithms that may have significant practical improvement by relaxing
the probabilistic bounds, as demonstrated by our UltraFast randomized selection.

In addition, our UltraFast parallel, randomized selection algorithm, here designed and analyzed for a message-
passing platform, would also be suitable for shared-memory multiprocessors (SMP’s). Each communication step

IThroughout this papeK andM refer to 20 and Z°, respectively.
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[ n [ Input]| FastAlgorithm| UltraFast Algorithm]|

512K 19 2
17
29
19
24
17
22
32
26
22
21
38
37
23
21

4095
28
24
21

866

Table IlI: Total number of iterations of the Fast and UltraFast Randomized Selection Algorithms. For this table,
the number of processors uspé- 8.

1M

2M

4aM

8M

ZID»n—|ZB0n—ZBn—ZBwun—Z 0 un—

W W W W W W WWWNWININNNNNNIN

can be eliminated, simplified, or replaced with a shared-memory primitive. For instance, the SMP algorithm

Execution Time of Fast and UltraFast
Randomized Selection Algorithms
on a 4-node IBM SP-2-TN

lt=—=  SETEEEED T | EEETEEEEED Fr | EEEEEE
O [I] Fast B [l] UltraFast
O [R] Fast W [R] UltraFast [--—f- e -
n O [S] Fast m SjUtrarast | | 1l
o 0.1+ R
E :
'_

0.01 1

14 15 16 17 18 19 20 21 22

logs N Elements

Figure 1: Empirical Performance of Fast versus UltraFast Randomized Selection Algorithnpswitimodes of
an IBM SP-2-TN.
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Execution Time of Fast and UltraFast
Randomized Selection Algorithms
on an 8-node IBM SP-2-TN
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Figure 2: Empirical Performance of Fast versus UltraFast Randomized Selection Algorithnps=an@modes of
an IBM SP-2-TN.

Execution Time of Fast and UltraFast
Randomized Selection Algorithms
on a 16-node IBM SP-2-TN
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10O [R]Fast B [R]UltraFast |||l
10 [S]Fast MW [S]UltraFast |77
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Figure 3: Empirical Performance of Fast versus UltraFast Randomized Selection Algorithns-with nodes
of an IBM SP-2-TN.
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would be as follows. Each processor collects its portion of the sample from the corresponding block of the input
and writes the sample to a shared-memory array. Thus, the second Gtahhest communication, is eliminated.

After a single processor determines the splittarandk, from the sample, th&roadcast communication in

step four simplifies into a memory read by each processor. Gdrabine in step six may be replaced by the
corresponding shared-memory primitive. Thather in step eight can be replaced with a shared-memory gather.
We are currently investigating the performance of this SMP approach.

10



UNM Technical Report: EECE-TR-99-005 References

A Chernoff Bounds

The following inequalities are useful for bounding the tail ends of a binomial distribution with pararteteys
If X is a binomial with parameter@, p), then the tail distributions, known as Chernoff bounds [10], are as
follows.

Pr(X < (1—¢)np) < e*%n_p (4)
Pr(X > (1+¢)np) < e‘énrp (5)

forallO<e< 1.
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