Optical Cooling of a Large Core Diameter Yb:SiO$_2$ Fiber to 18 K Below Ambient Temperature: A New World Record

Brian Topper1,2

1University of New Mexico, Physics & Astronomy and Interdisciplinary Science, 210 Yale Blv NE, Albuquerque, NM 87131, USA
2Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, NM 87106, USA

Abstract Laser cooling of ytterbium doped silica glass by anti-Stokes fluorescence to 18 Kelvin below room temperature has been observed. This milestone achievement breaks the record for cooling a silica fiber by two orders of magnitude. Our new record demonstrates the viability of using silica as a material for radiation-balanced fibers and amplifiers. Numerical simulations using the parameters of the experimentally investigated fiber indicate the potential of a self-cooled laser outputting multiple watts.

Introduction

When an ultra pure rare-earth doped solid is pumped at a wavelength longer than the mean fluorescence wavelength, the anti-Stokes fluorescence (ASF) has the potential to extract heat [1]. Cooling by ASF after illumination with coherent light is prerequisite to the construction of a radiation balanced laser (RBL) [2]. In 1995, Epstein et al. reported the first experimental observation of net solid state cooling in a ytterbium doped fluoride (ZBLANP) glass [3]. Recently, laser cooling of silica has been shown to be possible from a theoretical standpoint [4]. Shortly after, laboratory experiments confirmed the viability indicating the durable host is a viable material for radiation balancing lasers and amplifiers [5, 6, 7, 8].

Experimental

Experiments were carried out on a high-purity Yb doped silica fiber pulled from a preform fabricated by the modified chemical vapor deposition technique. The glass is doped with 6.56×10^{21} Yb$^{3+}$ ions/m3 and co-doped with Al$^{3+}$ and F$^−$. Most of the passive cladding was stripped from the preform, resulting in a drawn fiber with a core diameter of 900 microns and a cladding diameter of 1000 microns. The fiber exhibits very low background absorption, with $\alpha_c (\lambda = 1200 \text{ nm}) = 10 \text{ dB/km}$, which has been found to be suitable for laser cooling in SiO$_2$ [5, 6].

Laser cooling was investigated using a 1035 nm seed from a Ti: Sapphire source that was amplified to between 1 W and 20 W using a homemade fiber amplifier. Conductive heating with the surroundings was minimized by supporting the fiber with ultra-thin rods. For some trials, convective heating was minimized by performing experiments in a vacuum cube held near 10 torr. Time-resolved temperature measurements were made perpendicularly to the optical axis of the fiber using a thermal camera and spectrometer. A calibration between the fiber temperature and the luminescence spectral form with 1035 nm excitation was carried out using a temperature controlled plate over the range 5°C to 55°C. Thus, in the event of thermal camera saturation, the fiber temperature could be accurately described by the differential luminescence thermometry technique (DLT) [9].

Results

We investigate the application of the tested fiber by carrying out laser simulations on a 25 cm length of fiber. The pump wavelength is set to 1030 nm and varied between 80 W and 100 W with a 2 W step size. The output mirror reflectivity is centered at 1590 nm and varied between 88% and 95% with a step size of 0.5%. From the simulated propagating pump and signal powers, the heat density is computed using the formalism in Ref. [10] and then converted to temperature in Kelvin via the approach in Ref. [11]. Selecting one set of values of the simulation results as an example, for $R_p = 0.95$ and $R_s (c = 0) = 100$ W the theoretical output is 6.7 W coinciding with a computed heat density of -0.1 W/cm3. This corresponds to a temperature drop relative to the surroundings of $\Delta T = -0.4$ K at the end of the fiber during laser operation.

Summary

A large core diameter silica fiber has been cooled, in multiple experiments, by more than 10 K relative to ambient temperature. The cooling of silica by 18 K from room temperature brings with it a positive outlook for the future of high power radiation balancing devices.

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0362 titled Multidisciplinary Approaches to Radiation Balanced Lasers (MARBLE).

Outlook

We demonstrate the relationship between the experimental data and Eq. 1, the case of the 12 W pump is shown in Fig. 5. To demonstrate the relationship between the experimental data and the theoretical output is 6.7 W coinciding with a computed heat density of -0.1 W/cm3. This corresponds to a temperature drop relative to the surroundings of $\Delta T = -0.4$ K at the end of the fiber during laser operation.

References