A Tribute to Dr. W. Randolph Lovelace II

Brig. Gen. Ernest A. Pinsor
A Tribute to Dr. W. Randolph Lovelace II

BY BRIG. GEN. ERNEST A. PINSOI
Commander, Office of Aerospace Research, USA

From an address dedicating to Dr. Lovelace II
the 11th Science Seminar, Air Force Office of Scientific Research
Albuquerque, June 15, 1966

It is distinctly appropriate that we honor the memory of Dr. W. Randolph Lovelace II, late President of the Lovelace Foundation for Medical Education and Research, in Albuquerque, who personally made many contributions to the United States Air Force and to scientific research.

Dr. W. Randolph Lovelace II, and Major General W. Randolph Lovelace II, United States Air Force, were one and the same. Pilot . . . physician . . . surgeon . . . research scientist . . . humanitarian . . . Rand Lovelace was one of the great pioneers in our nation’s aviation and aerospace history.

Upon learning of the untimely death of Randy and Mary Lovelace in an aircraft accident on December 12, 1965, my first reaction—perhaps selfish—was the heartrending personal loss of dear and close friends of many years standing.

I realize that Randy was not only a great loss to his family and friends but to the entire scientific world . . . and especially to the medical profession, the Air Force, and the National Aeronautics and Space Administration.

It was an ironic fact that the date of the tragic accident—December 12—was during the week of the historic space rendezvous of Gemini 6 and 7. Gemini 7 carried the largest and most significant group of medical experiments orbited by the United States. These experiments were the result of Dr. Lovelace’s leadership, vision, and faith in man’s ability to advance science and technology through space exploration and painstaking research.

Thus the Gemini 7 flight was a culmination of his thirty-year career in advancing our nation’s aerospace progress through research and development.

Randy Lovelace was a great and inspiring scientist. It was my privilege to work with him when he was a dollar-a-year consultant to the Army Air Corps at Wright Field in Ohio. It was there that—working together in the late Thirties—we provided pilots with the first oxygen mask. It was crude but it worked, and was the forerunner of our later oxygen equipment, the
development of which was also accomplished with Dr. Lovelace's guidance and assistance.

Randy was called to active service in the Medical Corps of the Army Air Corps in 1942. His first assignment was at Wright Field where he soon became Chief of the Aero Medical Laboratory. It was my privilege to be assigned to the laboratory during the time Randy was there. This was where came to admire his skill, his dynamism, his dedication, and his inspiring interest in aviation medicine.

Although he was Chief of the laboratory, he insisted on personally participating in some of the hazardous experiments. This included numerous high-altitude test flights involving testing of pressurized oxygen equipment and pressure cabin aircraft to altitudes of 45,000 feet. He was among the first subjects in our explosive decompression experiments which were so vital before pressure-cabin aircraft could become a reality.

Dr. Lovelace was awarded the Distinguished Flying Cross for participation in an extremely hazardous experiment... a parachute jump from over 40,000 feet to test firsthand the high-altitude bailout oxygen equipment developed under his supervision. He was the first man to bail out from above 40,000 feet. He wanted to test personally his own theories of high-altitude survival.

Many of his colleagues believed no man could do it and survive. Randy had the knowledge, and the confidence, and the courage to know that he could. And he did it. What he learned resulted later in the saving of many lives.

While at the Aero Medical Laboratory, Dr. Lovelace volunteered and insisted on making numerous trips to the combat zone in Europe to learn firsthand the problems encountered by our combat flying personnel so that efforts of the Aero Medical Laboratory could be oriented to solving these problems.

He flew on a mission over Czechoslovakia in a B-17... to test a new pressure-breathing oxygen mask under combat conditions... the aircraft was attacked by German fighters and severely damaged by cannon fire. Luckily, pilot and crew were able to escape.

Later, for participation in aerial flights in sustained operational activities with the 15th Air Force against the enemy, Randy was awarded the Air Medal.

Prior to the surrender of Germany, Dr. Lovelace flew on a secret mission to Sweden for General Arnold to obtain information on a new ejection seat for fighter aircraft. He brought one back with him to Wright Field where it was the first ejection seat tested in the United States. Randy played
an important part in the air evacuation of the wounded from Normandy to England shortly after the invasion by Allied forces.

After the Russian Army overran Rumania in 1944, Dr. Lovelace made two trips in B-17 bombers from Foggia, Italy, to Bucharest, to examine and evacuate wounded American flyers to Italy. By a strange coincidence, one of the American pilots evacuated by Randy was Captain Charles Pinsor, my younger brother, a fighter ace who had been shot down while flying P-38 over Rumania on his sixty-first combat mission.

Immediately following VE-Day, Randy, always searching for new information, spent two months in Germany collecting various items of life saving equipment and interrogating German scientists who had been doing research in aviation medicine.

During the early postwar months, he served with the Von Karman Group and helped write the famous report which blue-printed the U.S. Air Force advances in aviation and space technology in the two decades since World War II.

A tireless and enthusiastic worker, Dr. Lovelace was in great demand for his scientific talents. He served on the scientific Advisory Board to the Commanding General of the United States Air Force. He was a consultant in Aviation Medicine to the Surgeon General of the Air Force, chairman of the Armed Forces Medical Policy Council to the Secretary of Defense and chairman of the Aerospace Medical Panel of the Advisory Group for Aeronautical Research and Development of the North Atlantic Treaty Organization. He has been a consultant to a majority of the United States aircraft manufacturers and airlines.

He was co-recipient of the coveted Colliers Trophy, in 1940, for his pioneer work in aviation medicine in general, and specifically for his research on the effects and causes of pilot fatigue.

Since 1943 he has been honored on many occasions for his many contributions to science, to medicine, to aerospace and to mankind. Among these have been two awards from Sweden and two from the Soviet Union.

From the beginning of the National Aeronautics and Space Administration, Dr. Lovelace was a shaper of the national space effort, first as a consultant, and finally as Director of Space Medicine.

In 1947 Randy joined the famed Lovelace Clinic in Albuquerque and soon founded the Lovelace Foundation for Medical Education and Research. The Foundation, under his leadership, pioneered in aerospace medical studies for the government and other clients, including many leading industries. Here, new electronic computer techniques were devised to work on a large scale in medical diagnosis and research.
Randolph played an important role in setting up the physical examinations which were used at the Lovelace Clinic for selection of the astronauts for Project Mercury.

His interests were wide and varied. In addition to aviation and space medicine, he was vitally concerned in atomic energy for peaceful uses. He served as a delegate to the International Conference on the Peaceful Uses of Atomic Energy in Geneva and he was a member of the Plowshare Advisory Committee of AEC.

While Randy possessed many commendable talents or characteristics, there were two of these for which I had special admiration. The first of these was courage. He had the mental courage to believe firmly in his convictions and the physical courage to act on them. He never let the effort required by or the hazard involved in any necessary action deter him from fulfilling the absolute full measure of his responsibilities. The second of these was foresight. He had a rare talent for visualizing the significant actions required to be done now—for future needs. I believe this characteristic more than any other was responsible for his greatest contributions to science, to his country, and to mankind.