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Abstract: The single-valued neutrosophic (SVNS) set is a beneficial and significant tool to deal with 

uncertainty with the neutrality of truth. This article introduces a non-conventional asymmetric 

measure of comparison in the single-valued neutrosophic framework. Such a measure is applied to 

the problems where the conventional symmetric measures of comparison do not produce valid 

computational results and require a directed closeness or discrimination between two abstractions 

represented by neutrosophic sets. We prove some properties of the proposed neutrosophic 

comparison measure and empirically justify its utilization in a problem of strategic decision-making, 

pattern recognition and medical diagnosis. The assessment of the performance of the proposed 

measure using “Degree of Confidence” shows the advantage of the proposed measure. 

Keywords: Single-valued neutrosophic set (SVNS); asymmetric measure; inaccuracy measure; 

pattern recognition. 

 

1. Introduction 

Many problems concerning decision-making, identification of patterns, machine learning, computer 

vision, data analytics, etc., predominantly utilize some measure of comparisons. Several studies are 

available regarding comparison measures in various uncertain and vague settings. The prevalently 

investigated comparison measures in uncertain environments are divergence, distance, dissimilarity, 

and similarity measures.  One common characteristic of divergence measures, distance measures, 

dissimilarity measures, and similarity measures in fuzzy and non-standard fuzzy settings is that 

these are symmetric. But, in specific comparisons, the symmetric comparison is not suitable. For 

instance, “P is like Q” may be preferred over “Q is like P” or vice-versa. Such situations need an 

asymmetric or directed comparison measure. This study proposes an asymmetric measure of 

comparison for single-valued neutrosophic sets. 

However, in an uncertain environment due to randomness, an asymmetric measure of comparison 

of two probability distributions was proposed by Kullback-Leibler [1-2]. These measures found vital 

application in communication theory and economics. Kerridge inaccuracy is a non-parametric 

generalization of Shannon’s entropy [3]. Kerridge [4] termed it an ‘inaccuracy measure’ for measuring 

the inaccuracy between two probability distributions. Moreover, numerous probabilistic information 

measures were put forward during the second half of the twentieth century.  

In 1965, Zadeh [5] coined a new form of uncertainty due to vagueness or linguistic imprecision and 

developed fuzzy theory.  As Shannon’s entropy [3] quantifies the uncertainty due to randomness, 
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De-Luca and Termini [6] introduced fuzzy entropy to quantify the uncertainty due to vagueness. This 

pioneered fuzzy entropy is structurally similar to that of Shannon’s entropy [3] but practically 

different. Various extensions of fuzzy theory and information measures in these frameworks have 

been developed in the last three decades.  

Smarandache [7] developed a more advanced notion, “Neutrosophy,” to more comprehensively 

model the vagary of information. The neutrosophic theory reconciles certain pitfalls of the fuzzy 

approach and its extensions. Wang et al. [8] proposed a single-valued neutrosophic set as a subclass 

of a neutrosophic set. In SVNs, the data information is indicated with 3-tuple, i.e., degree of 

membership, degree of indeterminacy, and degree of non-membership. Hence, the information 

evaluation in terms of neutrosophic sets seems more suitable for studies concerning decision-making, 

pattern recognition, clustering analysis, etc. A single-valued neutrosophic set allows us to choose 

truth membership, false membership, and indeterminacy in an unrestrictive manner in contrast to 

other fuzzy extensions. 

Several neutrosophic information measures have been proposed, such as entropy, similarity, 

distance, and divergence measures over the years. Some prominent researches are due to Chai et al. 

[9], Wang [10], Biswas, et al. [11], Wu et al. [12], Aydogdu [13], Bourmi and Smarandache [14], Bourmi 

and Smarandache [15], Khan et al., [16], Majumdar and Samanta [17], Ye [18-19], Ye and Fu [20], 

Chakraborty et al. [21], Chakraborty et al. [22], Haque et al. [23], Haque et al. [24], and Chakraborty et 

al. [25], Bonissone [26], Eshragh and Mamdani [27], etc.  References [28-30] also report the work on 

developing new similarity/distance measures for fuzzy and SVNSs.  

 

Motivation and contribution 

Recent trends notice that all the existing measures of comparison (distance/similarity/divergence) in 

the neutrosophic framework are symmetric. But there are practical circumstances where the 

asymmetric comparison is more suitable. For example, we consider the following two sentences: 

I. Saddam Hussain was like Hitler. 

II. Hitler was like Saddam Hussain. 

Off course, sentence-I would be the apparent preference for the comparison, probably due to the 

genocide instinct of the latter. In such a situation, one concept is the target, another is the base, and 

the main focus is the target. In sentence-I and -II, Saddam Hussain is the target, and Hitler is the base.  

       Further, a problem of medical diagnosis, where the symptoms of the patient are compared 

with symptoms of certain diseases (as established by medical experts), also seems to be better dealt 

with using asymmetric comparison measures. In such a problem, the patient's symptoms in single-

valued neutrosophic representation (P) must be treated as a target, and the pre-assigned symptoms 

of the disease (Q) may be treated as a base. The direction of comparison in this problem must be Q→P 

instead of P→Q. Such asymmetric comparisons are unavoidable in any discipline and can essentially 

need to be investigated using some asymmetric measures of comparison. In view of these facts, 

natural question arise what is the concept of asymmetric measure of comparison? How to construct 

an asymmetric measure of comparison in neutrosophic environment? Does such a comparison 

measure practically valid and effective? Moreover, to best of our knowledge there is no asymmetric 



249 

 

 

Surender Singh and Sonam Sharma, An Asymmetric Measure of Comparison of Neutrosophic Sets 

 

measure of information in the literature concerning neutrosophic information theory. Here-

mentioned facts and research gap in neutrosophic information theory motivated us to consider this 

study. 

The novel contribution of this article is as follows.  

• We introduce a novel concept of asymmetric comparison measure for SVNSs and term it a 

“Single-Valued Neutrosophic Inaccuracy Measure.”  

• We prove some algebraic properties of the proposed comparison measure for SVNSs.  

• We also deduce a performance index “Degree of Confidence” to examine the performance of 

various neutrosophic comparison measures in the classification problems 

• We also discuss applications of the proposed measure in pattern recognition and medical 

diagnosis problem. 

The remaining paper is structured as follows. Section 2 presents preliminaries. Section 3 introduces 

inaccuracy measures/asymmetric measure of comparison between SVNSs. In section 4, we discuss 

some properties of the proposed measure.  Section 5 presents an application of the proposed 

inaccuracy measure. Section 6 includes the comparative study. Finally, Section 7 concludes the article.  

 

2. Preliminaries  

 

This section considers some notions related to single-valued neutrosophic sets and inaccuracy 

measures. 

 

Definition 2.1[3]. Let 𝑌 =   (𝑦1, 𝑦2, 𝑦3,…,𝑦𝑛) be a random variable associated with an experiment. Let 

𝑃 =  (𝑝1, 𝑝2, 𝑝3,…𝑝𝑛) be the probability distribution of random variable Y. Shannon’s entropy measure 

is given by 

𝐻(𝑃) =  − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑛
𝑖=1 . 

 

 

Definition 2.2[1][2].  Let 𝑌 =   (𝑦1 , 𝑦2, 𝑦3,…,𝑦𝑛) be a random variable associated with an experiment. 

Let 𝑃 =  (𝑝1, 𝑝2, 𝑝3,…𝑝𝑛)   and 𝑄 =  (𝑞1, 𝑞2, 𝑞3,…𝑞𝑛)  be two probability distributions. Then the 

divergence measure between P and Q is given by 

 

𝐷 (𝑃, 𝑄) =  ∑ 𝑝𝑖𝑙𝑜𝑔2

𝑝𝑖

𝑞𝑖

𝑛

𝑖=1

 . 

Definition 2.3[4]. Let 𝑃 =  (𝑝1, 𝑝2, 𝑝3,…𝑝𝑛)  and 𝑄 =  (𝑞1, 𝑞2, 𝑞3,…𝑞𝑛) be two probability distributions. 

Then inaccuracy of distribution Q with respect to distribution P is given by  

 

𝐼(𝑃, 𝑄) =  − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑞𝑖
𝑛
𝑖=1 . 

 

A particular case of a neutrosophic set is a single-valued neutrosophic set which was proposed by 

Wang et al. [8] 

 

Definition 2.5[8]. Let 𝑦𝑖 be a generic element of the universal set Y. A truth-membership function 

characterizes a single-valued neutrosophic set  𝜌𝐴(𝑦𝑖), indeterminacy-membership function   𝜃𝐴(𝑦𝑖) 

and falsity-membership function𝛿𝐴(𝑦𝑖).  Also, for each  𝑦𝑖 ∈ 𝑌, 𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)  ∈ [0, 1]  with 

condition 𝜌𝐴(𝑦𝑖) + 𝜃𝐴(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)  ∈ [0, 3]. 

In other words, a single-valued neutrosophic set A can be denoted by a triplet, i.e.,  
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𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } 

Notation: SVNS (Y) denotes the set of all neutrosophic elements in Y. 

Some of the basic and useful operations on SVNS are defined as follows: 

Definition 2.6[8].Let 𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 }  and  

𝐵 =  {〈𝜌𝐵(𝑦𝑖), 𝜃𝐵(𝑦𝑖), 𝛿𝐵(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 }. 

 be two SVNSs, then the union of A and B is defined as  

𝐴 ∪ 𝐵 = {< 𝑚𝑎𝑥. (𝜌𝐴(𝑦𝑖), 𝜌𝐵(𝑦𝑖)), 𝑚𝑖𝑛. (𝜃𝐴(𝑦𝑖), 𝜃𝐵(𝑦𝑖)), 𝑚𝑖𝑛. (𝛿𝐴(𝑦𝑖), 𝛿𝐵(𝑦𝑖))> | 𝑦𝑖 ∈ 𝑌 }. 

 

Definition 2.7 [8] For two SVNSs, A and B, the intersection of A and B is  

𝐴 ∩ 𝐵 = {< 𝑚𝑖𝑛. (𝜌𝐴(𝑦𝑖), 𝜌𝐵(𝑦𝑖)), 𝑚𝑎𝑥. (𝜃𝐴(𝑦𝑖), 𝜃𝐵(𝑦𝑖)), 𝑚𝑎𝑥. (𝛿𝐴(𝑦𝑖), 𝛿𝐵(𝑦𝑖)) > | 𝑦𝑖 ∈ 𝑌}. 

 

Definition 2.8[8]. Let 𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } be an SVNs. Then the complement of A is 

defined as  

𝐴𝑐 = {< 1 − 𝜌𝐴(𝑦𝑖), 1 − 𝜃𝐴(𝑦𝑖), 1 −  𝛿𝐴(𝑦𝑖) > | 𝑦𝑖 ∈ 𝑌}. 

 

Definition 2.9[8]. Let 𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } and  𝐵 =  {〈𝜌𝐵(𝑦𝑖), 𝜃𝐵(𝑦𝑖), 𝛿𝐵(𝑦𝑖)〉| 𝑦𝑖 ∈

𝑌}   be two SVNSs, then  𝐴 ⊆ 𝐵 if  

𝜌𝐴(𝑦𝑖) ≤ 𝜌𝐵(𝑦𝑖), 𝜃𝐴(𝑦𝑖) ≥ 𝜃𝐵(𝑦𝑖),  𝛿𝐴(𝑦𝑖) ≥ 𝛿𝐵(𝑦𝑖),   ∀  𝑦 𝑖 ∈ 𝑌. 

Hatzimichailidis [31] introduced the notion of Degree of confidence (DoC) in intuitionistic fuzzy 

environment. The definition of DoC in neutrosophic settings is as follows. 

Definition 2.10. Let 𝑃𝑖     be an unknown pattern classified to some pattern from the class 𝑃𝑗 .   Degree 

of confidence of neutrosophic comparison measure M estimates the confidence level that comparison 

measure in classifying a pattern 𝑃𝑖   to the pattern 𝑃𝑘 (belongs to a class of patterns) and it can be 

computed as 

𝐷𝑂𝐶 = ∑ |𝑀(𝑃𝑖 , 𝑃𝑘)  − 𝑀(𝑃𝑖 , 𝑃𝑗)|

𝑛

𝑗=1 𝑗≠𝑘

. 

The greater the degree of confidence (DOC) for a comparison measure, the more confident the 

classification result of the measure is. 

 

3. Inaccuracy Measure of a Single-Valued Neutrosophic Set 

 

In this section, we propose an inaccuracy measure of single-valued neutrosophic sets and discuss 

their properties. Verma and Sharma [32] presented an inaccuracy measure of fuzzy sets as follows: 

𝐼 (𝐴, 𝐵) =  −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + (1 − 𝜌𝐴(𝑦𝑖))log  (1 − 𝜌𝐵(𝑦𝑖))] .                                      (1)

𝑛

𝑖=1

 

where 𝜌𝐴 and 𝜌𝐵 are the membership functions associated with fuzzy sets A and B. 

We can write  



251 

 

 

Surender Singh and Sonam Sharma, An Asymmetric Measure of Comparison of Neutrosophic Sets 

 

𝐼 (𝐴, 𝐵) =  −
1

𝑛
∑ 𝑆(𝑥, 𝑦).                                                                                                                           (2)

𝑛

𝑖=1

 

where, 𝑆 (𝑥, 𝑦) =  −𝑥𝑙𝑜𝑔𝑦 − (1 − 𝑥)log (1 − 𝑦)  is called Karridge’s inaccuracy function for two 

events. 

Since in a single-valued neutrosophic set, the non-membership and indeterminacy are independent 

of the membership function; therefore, the inaccuracy function utilized in equation (2) can be 

modified as  

𝑆 (𝑥, 𝑦) =  −𝑥1𝑙𝑜𝑔𝑦1 − 𝑥2𝑙𝑜𝑔𝑦2 − 𝑥3𝑙𝑜𝑔𝑦3,                                                                                       (3) 

where  𝑥𝑖  , 𝑦𝑖   ∈ [0, 1] , 𝑖 = 1, 2, 3. 

Consequently, the inaccuracy measure for two single-valued neutrosophic sets                      

 𝐴 =  {〈𝜌𝐴(𝑦𝑖), 𝜃𝐴(𝑦𝑖), 𝛿𝐴(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 }  and    𝐵 =  {〈𝜌𝐵(𝑦𝑖), 𝜃𝐵(𝑦𝑖), 𝛿𝐵(𝑦𝑖)〉| 𝑦𝑖 ∈ 𝑌 } , is defined as 

follows: 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) =  −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)].              (4)

𝑛

𝑖=1

 

   with convention 0. log 0 = 0. 

Next, we prove some properties of the proposed inaccuracy measure of SVNSs. 

Theorem 3.1. Let 𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌) , the proposed inaccuracy measure satisfies the following 

properties: 

a) 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) = 0  if and only if either 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 0, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 0, 𝛿𝐴(𝑦𝑖) =

 𝛿𝐵(𝑦𝑖) = 0 or 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 1, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 1, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 1 𝑤ℎ𝑒𝑟𝑒  𝑖 =

1, 2, 3, … , 𝑛 ;  ∀𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌). 

b) 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) +  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) +  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)   ∀𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌). 

c) 𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐶) +  𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐶) = ( 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶) +  𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐶);  ∀𝐴, 𝐵, 𝐶 ∈ 𝑆𝑉𝑁𝑆(𝑌). 

d) 𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵) = 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐴);  ∀𝐴, 𝐵 ∈ 𝑆𝑉𝑁𝑆(𝑌). 

 

Proof. a) 

Let 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) = 0, then, from Eq. (4), we have 

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]   = 0,    

𝑛

𝑖=1

 

[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]   = 0  ∀ 𝑖 = 1, 2, 3, … , 𝑛.   

The above relation holds, if and only if 

 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 0, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 0, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 0  

or 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 1, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 1, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 1 ∀ 𝑖 = 1, 2, 3, … , 𝑛 . 

Conversely, 

Suppose, 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 0, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 0, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 0  

or 𝜌𝐴(𝑦𝑖) =  𝜌𝐵(𝑦𝑖) = 1, 𝜃𝐴(𝑦𝑖) =  𝜃𝐵(𝑦𝑖) = 1, 𝛿𝐴(𝑦𝑖) =  𝛿𝐵(𝑦𝑖) = 1 ∀ 𝑖 = 1, 2, 3, … , 𝑛. 

i.e., [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]   = 0 

or,  
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−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]   = 0   

𝑛

𝑖=1

 

Which implies that 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) = 0. □ 

 

Proof. b) 

For this, we divide the universal set Y into two disjoint subsets, i.e., 

𝑌1 = {𝜌𝐴(𝑦𝑖) ≥ 𝜌𝐵(𝑦𝑖) ≥ 𝜌𝐶(𝑦𝑖);  𝜃𝐴(𝑦𝑖) ≤ 𝜃𝐵(𝑦𝑖) ≤ 𝜃𝐶(𝑦𝑖);  𝛿𝐴(𝑦𝑖) ≤ 𝛿𝐵(𝑦𝑖) ≤ 𝛿𝐶(𝑦𝑖)| 𝑦𝑖 ∈ 𝑌}         (5)     

𝑌2 = {𝜌𝐴(𝑦𝑖) ≤ 𝜌𝐵(𝑦𝑖) ≤ 𝜌𝐶(𝑦𝑖);  𝜃𝐴(𝑦𝑖) ≥ 𝜃𝐵(𝑦𝑖) ≥ 𝜃𝐶(𝑦𝑖);  𝛿𝐴(𝑦𝑖) ≥ 𝛿𝐵(𝑦𝑖) ≥ 𝛿𝐶(𝑦𝑖)| 𝑦𝑖 ∈ 𝑌}         (6) 

Then by taking L.H.S, we have 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) = −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵∪𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵∪𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵∪𝐶(𝑦𝑖)]𝑌1

+  

(−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵∪𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵∪𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵∪𝐶(𝑦𝑖)]

𝑌2

) 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) = −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌1

−

 
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]𝑌2

.  

Which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵)+𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶).                                                                                                    (7) 

Now by taking,  

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) = −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵∩𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵∩𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵∩𝐶(𝑦𝑖)]

𝑌1

 

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵∩𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵∩𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵∩𝐶(𝑦𝑖)]

𝑌2

 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) = −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]

𝑌1

 

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]

𝑌2

 

which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵)+𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)                                                                                                  (8) 

 

Adding (7) and (8), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) + 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) ≤ (𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)). □ 

 

Proof. c)   

By taking L.H.S, we have 
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𝐼𝑆𝑉𝑁𝑆( 𝐴 ∪ 𝐵, 𝐶) = −
1

𝑛
∑ [𝜌𝐴∪𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴∪𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) + 𝛿𝐴∪𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌1

+  

(−
1

𝑛
∑ [𝜌𝐴∪𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴∪𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴∪𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌2

). 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐶) = −
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]

𝑌1

 

−
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌2

. 

which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)+𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐶).                                                                                                  (9) 

Again, by taking L.H.S, we have 

 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩  𝐵, 𝐶) = −
1

𝑛
∑[𝜌𝐴∩𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴∩𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴∩𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]

𝑌1

−
1

𝑛
∑[𝜌𝐴∩𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴∩𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴∩𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]

𝑌2

. 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐶) = −
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)]𝑌1

  

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐶(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐶(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐶(𝑦𝑖)].

𝑌2

 

Which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩  𝐵, 𝐶) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶)+𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐶).                                                                                                       (10) 

 

Adding (9) and (10), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∪ 𝐶) + 𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵 ∩ 𝐶) ≤ (𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐶) + 𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐶)).  □ 

 

Proof. d) 

By taking two disjoint subsets of universal set Y, i.e., 

   𝑌1 = {𝜌𝐴(𝑦𝑖) ≥ 𝜌𝐵(𝑦𝑖);  𝜃𝐴(𝑦𝑖) ≤ 𝜃𝐵(𝑦𝑖);  𝛿𝐴(𝑦𝑖) ≤ 𝛿𝐵(𝑦𝑖)| 𝑦𝑖 ∈ 𝑌},                                                         (11)     

𝑌2 = {𝜌𝐴(𝑦𝑖) ≤ 𝜌𝐵(𝑦𝑖);  𝜃𝐴(𝑦𝑖) ≥ 𝜃𝐵(𝑦𝑖);  𝛿𝐴(𝑦𝑖) ≥ 𝛿𝐵(𝑦𝑖)| 𝑦𝑖 ∈ 𝑌}.                                                          (12) 

By using equations (5), (6) and by taking L.H.S, we have 

𝐼𝑆𝑉𝑁𝑆( 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵)

= −
1

𝑛
∑[𝜌𝐴∪𝐵(𝑦𝑖)log (𝜌𝐴∩𝐵(𝑦𝑖)) + 𝜃𝐴∪𝐵(𝑦𝑖)log 𝜃𝐴∩𝐵(𝑦𝑖) +  𝛿𝐴∪𝐵(𝑦𝑖)log 𝛿𝐴∩𝐵(𝑦𝑖)]

𝑌1

−
1

𝑛
∑[𝜌𝐴∪𝐵(𝑦𝑖)log (𝜌𝐴∩𝐵(𝑦𝑖)) + 𝜃𝐴∪𝐵(𝑦𝑖)log 𝜃𝐴∩𝐵(𝑦𝑖) +  𝛿𝐴∪𝐵(𝑦𝑖)log 𝛿𝐴∩𝐵(𝑦𝑖)].

𝑌2

 

                   

Now using (5) and (6), we get 
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 𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐴(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐴(𝑦𝑖)]𝑌1

 

                        −
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐴(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]𝑌2

.  

Which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵)

= −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]

𝑌1∪𝑌2

−
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐴(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐴(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐴(𝑦𝑖)]

𝑌1∪𝑌2

. 

or 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) =  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵)+𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐴).                                                                                                   (13) 

Now,  

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩  𝐵, 𝐴 ∪ 𝐵)

=  −
1

𝑛
∑[𝜌𝐴∩𝐵(𝑦𝑖)log (𝜌𝐴∪𝐵(𝑦𝑖)) + 𝜃𝐴∩𝐵(𝑦𝑖)log 𝜃𝐴∪𝐵(𝑦𝑖) +  𝛿𝐴∩𝐵(𝑦𝑖)log 𝛿𝐴∪𝐵(𝑦𝑖)]

𝑌1

−
1

𝑛
∑[𝜌𝐴∩𝐵(𝑦𝑖)log (𝜌𝐴∪𝐵(𝑦𝑖)) + 𝜃𝐴∩𝐵(𝑦𝑖)log 𝜃𝐴∪𝐵(𝑦𝑖) +  𝛿𝐴∩𝐵(𝑦𝑖)log 𝛿𝐴∪𝐵(𝑦𝑖)]

𝑌2

. 

Now using (5) and (6), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵)

= −
1

𝑛
∑[𝜌𝐵(𝑦𝑖)log (𝜌𝐴(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) + 𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]

𝑌1

−
1

𝑛
∑[𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐴(𝑦𝑖) + 𝛿𝐵(𝑦𝑖)log 𝛿𝐴(𝑦𝑖)]

𝑌2

. 

               

Which implies that 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵)

= −
1

𝑛
∑ [𝜌𝐴(𝑦𝑖)log (𝜌𝐵(𝑦𝑖)) + 𝜃𝐴(𝑦𝑖)log 𝜃𝐵(𝑦𝑖) +  𝛿𝐴(𝑦𝑖)log 𝛿𝐵(𝑦𝑖)]

𝑌1∪𝑌2

−
1

𝑛
∑ [𝜌𝐵(𝑦𝑖)log (𝜌𝐴(𝑦𝑖)) + 𝜃𝐵(𝑦𝑖)log 𝜃𝐴(𝑦𝑖) +  𝛿𝐵(𝑦𝑖)log 𝛿𝐴(𝑦𝑖)]

𝑌1∪𝑌2

. 

or 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∩  𝐵, 𝐴 ∪ 𝐵) ≤  𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵)+𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐴)                                                                                      (14) 

 

Adding (13) and (14), we get 

𝐼𝑆𝑉𝑁𝑆(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐴 ∩ 𝐵, 𝐴 ∪ 𝐵) ≤ (𝐼𝑆𝑉𝑁𝑆(𝐴, 𝐵) + 𝐼𝑆𝑉𝑁𝑆(𝐵, 𝐴)).□ 

 

In the next section, we investigate the application of the proposed inaccuracy measure. 
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4. Applications 

In this section, we empirically illustrate the practical application of our proposed asymmetric 

measure of comparison in strategic decision-making and medical diagnosis.  

4.1 Application to strategic decision-making 

  Let us consider a very pertinent corporate problem in which corporation Y wants to launch one of 

its five products using five strategies. Let the set of products be 𝑃 =  {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5}, and the set of 

strategies be 𝑆 =  {𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5}. Table 1 represents the weights of strategies of corporation Y in 

terms of memberships   𝜌𝑦(𝑍𝑖), indeterminacy  𝜃𝑦(𝑍𝑖) and non-membership value 𝛿𝑦(𝑍𝑖)   where 

𝑖 = 1, 2, 3, 4, 5. The weights have been assigned to these strategies because of their feasibility based 

on certain factors.  

 

Table 1. Weights of strategies of the corporation as Single-Valued neutrosophic number 

(𝜌𝑦(𝑍1), 𝜃𝑦(𝑍1), 𝛿𝑦(𝑍1)) (𝜌𝑦(𝑍2), 𝜃𝑦(𝑍2), 𝛿𝑦(𝑍2)) (𝜌𝑦(𝑍3), 𝜃𝑦(𝑍3), 𝛿𝑦(𝑍3)) (𝜌𝑦(𝑍4), 𝜃𝑦(𝑍4), 𝛿𝑦(𝑍4)) (𝜌𝑦(𝑍5), 𝜃𝑦(𝑍5), 𝛿𝑦(𝑍5)) 

(0.8, 0.2, 0.3) (0.4, 0.4, 0.2) (0.5, 0.4, 0.2) (0.6, 0.2, 0.1) (0.7, 0.5, 0.3) 

 

It may be noted that (𝜌𝑦(𝑍𝑖), 𝜃𝑦(𝑍𝑖), 𝛿𝑦(𝑍𝑖))  indicates the degree of importance, degree of 

inconclusiveness, and degree of the unimportance of strategy 𝑍𝑖  to the corporation in its 

implementation. 

Table 2. represent the degree of importance, degree of inconclusiveness, and degree of the 

unimportance of products  (𝜌𝐶𝑗
(𝑍𝑖), 𝜃𝐶𝑗

(𝑍𝑖), 𝛿𝐶𝑗
(𝑍𝑖))  concerning the strategy  𝑍𝑖 , where 𝑗 =

1, 2, 3, 4, 5. 

Table 2. Weights of strategies implementation for product launch as Single-Valued neutrosophic 

number 

 (𝜌𝐶1
(𝑍1), 𝜃𝐶1

(𝑍1), 𝛿𝐶1
(𝑍1)) (𝜌𝐶2

(𝑍2), 𝜃𝐶2
(𝑍2), 𝛿𝐶2

(𝑍2)) (𝜌𝐶3
(𝑍3), 𝜃𝐶3

(𝑍3), 𝛿𝐶3
(𝑍3)) (𝜌𝐶4

(𝑍4), 𝜃𝐶4
(𝑍4), 𝛿𝐶4

(𝑍4)) (𝜌𝐶5
(𝑍5), 𝜃𝐶5

(𝑍5), 𝛿𝐶5
(𝑍5)) 

𝐶1 (0.5, 0.4, 0.4) (0.6, 0.3,0.2) (0.5, 0.2, 0.1) (0.6, 0.2, 0.8) (0.9, 0.2, 0.1) 

𝐶2 (0.9, 0.3, 0.2) (0.8, 0.7, 0.3) (0.6, 0.3, 0.2) (0.3, 0.4, 0.5) (0.4, 0.2, 0.2) 

𝐶3 (0.6, 0.5, 0.2) (0.7, 0.6, 0.5) (0.5, 0.3, 0.3) (0.2, 0.5, 0.6) (0.5, 0.4, 0.3) 

𝐶4 (0.9, 0.2, 0.1) (0.8, 0.8, 0.7) (0.4, 0.3, 0.2) (0.8, 0.5, 0.4) (0.3, 0.4, 0.5) 

𝐶5 (0.7, 0.7, 0.6) (0.1, 0.5, 0.2) (0.4, 0.3, 0.7) (0.6, 0.3, 0.2) (0.5, 0.4, 0.2) 

 

In an objective of the corporation to launch a suitable product because of the suitability of the five 

strategies, with the minimum risk (inaccuracy in our case), we use Eq. (4) to compute inaccuracy 

measures 𝐼𝑆𝑉𝑁𝑆(𝑌, 𝐶𝑖),  𝑖 = 1, 2, 3, 4, 5 using the data of Table 1 and Table 2. 

Table 3. Inaccuracy measures between products and strategies 

𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟏) 𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟐) 𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟑) 𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟒) 𝑰𝑺𝑽𝑵𝑺(𝒀, 𝑪𝟓) 

     1.6421         1.5129       1.4554         1.2930       1.4933 

According to the inaccuracy measures presented in Table 3, the product 𝐶4  will be more suitable for 

launch because of the available strategies. 
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4.2 Application to Medical Diagnosis 

First, we state the problem of medical diagnosis and present it in the framework of a neutrosophic 

environment. 

Medical diagnosis: The process of identifying an actual disease of a patient based on their symptoms 

is termed a medical diagnosis.  

Substantial uncertainties occur in most diagnostic decisions and can be handled using fuzzy 

methodologies. In medical science, several diseases have many symptoms in common. Therefore, 

identifying the appropriate illness from which a patient is suffering is difficult for physicians/experts. 

Let 𝐷 =  {𝐷1 , 𝐷2, 𝐷3 … . 𝐷𝑛}  be the set of diseases with several common symptoms and S =

 {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛} be the set of symptoms of the patient under investigation. In this scenario, S is an 

SVNS and 𝐷1, 𝐷2, 𝐷3 … . 𝐷𝑛  are also SVNSs. We compare each of 𝐷𝑖  with S. The patient is diagnosed 

with a disease  𝐷𝑖  with which S is maximum directed closeness.  

The flowchart of the process is shown in the figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: Flowchart of Medical Diagnosis using Inaccuracy Measure 

 

Compute the inaccuracy values 𝐼 (𝑆, 𝐷𝑖), 𝑖 = 1, 2, … , 𝑛. 

Input 

S = Symptoms of a patient 

D = {𝐷1, 𝐷2, … , 𝐷𝑛} = Symptoms of 

diseases 𝐷𝑖 

            Output 

Patient is diagnosed with disease 𝐷𝑖
∗ 

Identify 𝑖∗ = 𝐴𝑟𝑔. min
𝑖

𝐼 (𝑆, 𝐷𝑖)  
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We consider the following numerical example to illustrate the procedure. 

We present a numerical example to check the impact of the proposed inaccuracy measure. 

Numerical Example: We consider a set of three diseases,                                          

𝐷 =  {(𝐷1, 𝑣𝑖𝑟𝑎𝑙 𝑓𝑒𝑣𝑒𝑟) (𝐷2, 𝑚𝑎𝑙𝑎𝑟𝑖𝑎) (𝐷3, 𝑡𝑦𝑝ℎ𝑜𝑖𝑑)} , each of which has three common symptoms 

given in set 𝑅 = {(𝑟1, 𝑓𝑒𝑣𝑒𝑟), (𝑟2, ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒) (𝑟3, 𝑐𝑜𝑢𝑔ℎ)}. 

An expert team of doctors in the form of SVNSs assesses the characteristic information of the given 

diseases. The indicative information of symptoms and diagnosis for patients represented in the form 

of SVNSs as shown in Table 4: 

Table 4. Characteristics information of the diseases described in the form of SVNSs 

     𝑟1           𝑟2     𝑟3 

𝐷1 (0.3, 0.2, 0.5) (0.1, 0.3, 0.7) (0.4, 0.3, 0.3) 

𝐷2 (0.2, 0.2. 0.6) (0.1, 0.1, 0.8) (0.2, 0.3, 0.6) 

𝐷3 (0.2, 0.1, 0.7) (0.6, 0.3, 0.1) (0.3, 0.4, 0.3) 

  

The set 𝑃1  represents the symptoms of the patient under investigation as an SVNS.   

𝑃1 =  {(𝑟1, (0.1, 0.2, 0.7))(𝑟2, (0.8, 0.2, 0.3))(𝑟3, (0.2, 0.4, 0.4))}. 

Our task is to evaluate the closeness of  𝑃1  with  𝐷𝑖  using various SVN comparison measures. 

  To check the effectiveness of the proposed inaccuracy measure, we consider the following 

similarity/ distance measures for SVNSs. 

𝑆1 = 1- 
1

𝑛
 ∑ 𝑚𝑎𝑥. {|𝜌𝐴(𝑦𝑖) − 𝜌𝐵(𝑦𝑖)|, |𝜃𝐴(𝑦𝑖) −  𝜃𝐵(𝑦𝑖)|, |𝛿𝐴(𝑦𝑖) −  𝛿𝐵(𝑦𝑖)|}𝑛

𝑖=1 . 

(Bourmi and Smarandache [33]) 

𝑆2 =  
∑ {𝑚𝑖𝑛.(𝜌𝐴(𝑦𝑖),𝜌𝐵(𝑦𝑖))+ 𝑚𝑖𝑛.(𝜃𝐴(𝑦𝑖),𝜃𝐵(𝑦𝑖))+ 𝑚𝑖𝑛.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))}𝑛

𝑖=1

∑ {𝑚𝑎𝑥.(𝜌𝐴(𝑦𝑖),𝜌𝐵(𝑦𝑖))+ 𝑚𝑎𝑥.(𝜃(𝑦𝑖),𝜃𝐵(𝑦𝑖))+ 𝑚𝑎𝑥.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))}𝑛
𝑖=1

.          (Majumdar and Samanta [17]) 

𝑆3 =  
1

3𝑛
 ∑ [

𝑚𝑖𝑛.(𝜌𝐴(𝑦𝑖),𝜌𝐵(𝑦𝑖))

𝑚𝑎𝑥.(𝜌𝐴(𝑦𝑖),𝜌𝐵(𝑦𝑖))
+  

𝑚𝑖𝑛.(𝜃𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))

𝑚𝑎𝑥.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))
+

𝑚𝑖𝑛.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))

𝑚𝑎𝑥.(𝛿𝐴(𝑦𝑖),𝛿𝐵(𝑦𝑖))
]𝑛

𝑖=1 .        (Ye and Zhang [34]) 

𝑆4 =  
1

𝑛
 ∑ [1 −   

|𝜌𝐴(𝑦𝑖)− 𝜌𝐵(𝑦𝑖)|+|𝜃𝐴(𝑦𝑖)− 𝜃𝐵(𝑦𝑖)|+|𝛿𝐴(𝑦𝑖)− 𝛿𝐵(𝑦𝑖)|

3
]𝑛

𝑖=1 .                 (Ali Aydogdu [13]) 

𝑆5 = 1 − 
1

3𝑛
 ∑ |(𝜌𝐴

2(𝑦𝑖) − 𝜌𝐵
2(𝑦𝑖)) − (𝜃𝐴

2(𝑦𝑖) − 𝜃𝐵
2(𝑦𝑖)) − (𝛿𝐴

2(𝑦𝑖) − 𝛿𝐵
2(𝑦𝑖))| .𝑦∈𝑛  (Chai et al. [9]) 

𝑆6 =  
1

𝑛
 ∑

2(𝜌𝐴(𝑦𝑖).𝜌𝐵(𝑦𝑖)+𝜃𝐴(𝑦𝑖).𝜃𝐴(𝑦𝑖)+𝛿𝐴(𝑦𝑖).𝛿𝐴(𝑦𝑖))

(𝜌𝐴
2(𝑦𝑖)+𝜃𝐴

2(𝑦𝑖)+𝛿𝐴
2

(𝑦𝑖))+(𝜌𝐵
2(𝑦𝑖)+𝜃𝐵

2(𝑦𝑖)+𝛿𝐵
2

(𝑦𝑖))

𝑛
𝑖=1 .                          (Ye [35]) 

𝐷𝑀1 = 1 −   
1

𝑛
 ∑ [1 −  

|𝜌𝐴(𝑦𝑖)− 𝜌𝐵(𝑦𝑖)|+|𝜃𝐴(𝑦𝑖)− 𝜃𝐵(𝑦𝑖)|+|𝛿𝐴(𝑦𝑖)− 𝛿𝐵(𝑦𝑖)|

3
]𝑛

𝑖=1 .                

(Ali Aydogdu [13]) 

𝐷𝑀2 =  
1

3𝑛
 ∑ |(𝜌𝐴

2(𝑦𝑖) − 𝜌𝐵
2(𝑦𝑖)) − (𝜃𝐴

2(𝑦𝑖) − 𝜃𝐵
2(𝑦𝑖)) − (𝛿𝐴

2(𝑦𝑖) − 𝛿𝐵
2(𝑦𝑖))| .𝑦∈𝑛     (Chai et al. [9]) 

𝐷𝑀3 =  
1

𝑛
 ∑ (|𝜌𝐴

2(𝑦𝑖) − 𝜌𝐵
2(𝑦𝑖)|⋁|𝜃𝐴

2(𝑦𝑖) − 𝜃𝐵
2(𝑦𝑖)|⋁|𝛿𝐴

2(𝑦𝑖) − 𝛿𝐵
2(𝑦𝑖)|)𝑦∈𝑛 .          (Chai et al. [9]) 
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Now, compute the similarity/distance measure between patient 𝑃1  and diagnosis D. Similarly, we 

compute the proposed inaccuracy measure between the patient and the diagnosis. Table 5 shows the 

result obtained by calculating the different existing and proposed inaccuracy measures. 

 

Table 5: The similarity /distance measures between the symptoms of a patient 𝑃1and diagnosis 𝐷𝑖 

 𝐷1 𝐷2  𝐷3 Ranking 

𝑆1(𝑃1 , 𝐷𝑖) 0.5867 0.68 0.8734 𝐷3 >  𝐷2 > 𝐷1 

𝑆2(𝑃1 , 𝐷𝑖) 0.5238 0.5609 0.75 𝐷3 >  𝐷2 > 𝐷1 

𝑆3(𝑃1 , 𝐷𝑖) 0.0582 0.0623 0.25 𝐷3 >  𝐷2 > 𝐷1 

𝑆4(𝑃1 , 𝐷𝑖) 0.3108 0.3108 0.33 𝐷3 >  𝐷2 > 𝐷1 

𝑆5(𝑃1 , 𝐷𝑖) 0.8556 0.8389 0.9523 𝐷3 >  𝐷1 > 𝐷2 

𝑆6(𝑃1 , 𝐷𝑖) 0.7806 0.7987 0.9598 𝐷3 >  𝐷2 > 𝐷1 

𝐷𝑀1(𝑃1 , 𝐷𝑖) 0.6892 0.6892 0.67 𝐷3 >  𝐷2 > 𝐷1 

𝐷𝑀3(𝑃1 , 𝐷𝑖) 0.1444 0.1611 0.0477 𝐷3 >  𝐷1 > 𝐷2 

𝐷𝑀4(𝑃1 , 𝐷𝑖) 0.33 0.32 0.1266 𝐷3 >  𝐷2 > 𝐷1 

𝐼(𝐷𝑖  , 𝑃1) 1.7949 1.5818 1.314 𝐷3 >  𝐷2 > 𝐷1 

𝐼(𝑃1 , 𝐷𝑖) 2.0504 2.0283 1.5870 𝐷3 >  𝐷2 > 𝐷1 

 

Analysis: From the Table 5, we observe that all the comparison measures diagnosing the patient P1  

for Typhoid. Our proposed asymmetric comparison measure from both directions 𝐷𝑖  →  𝑃1 and 

 𝑃1  →  𝐷𝑖  also resulting the same diagnosis (refer last two rows of the Table 5). Thus, we conclude 

that our proposed measure is consistent with existing models. The proposed model is more effective 

from the following observations. 

In the figure 2, the directed comparison 𝐼(𝐷𝑖  , 𝑃1) shows the greater discriminating capability within 

the diseases. Thus, the proposed asymmetric measure is sensitive to the direction of comparison from 

the view point of the discriminating power. In the considered numerical problem, the diagnostic 

result due to both directed comparisons (𝐼(𝐷𝑖  , 𝑃1) and 𝐼( 𝑃1, 𝐷𝑖)) remains same but discriminating 

power is different. 
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Figure 2: Graphical representation of computed values of closeness due to various measures in 

Table 5 

From the above graph, we see that the diagnosis of patient 𝑃1 is typhoid. It shows that the proposed 

inaccuracy measure is feasible and effective. 

In the next section, we compare some existing divergence measures, similarity measures, and the 

proposed inaccuracy measure.  

 

5. Comparative Study 

To check the superiority of the proposed inaccuracy measure, we consider the numerical example 

obtained from Thao and Smarandache [36]. 

Let us suppose, for universal set 𝑈 =  {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚}, there are n patterns in the form of 

neutrosophic set  {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛}. Suppose that we have an unknown sample B. Our goal is to 

classify sample B into which pattern 𝐴𝑖 . 

For this, we have to calculate the proposed inaccuracy measure, existing divergence measures, and 

similarity measures of unknown sample B with each pattern 𝐴𝑖(𝑛 = 1, 2, 3, … 𝑛). 

Assume 𝐴1= {(𝑢1,0.7,0.7,0.2), (𝑢2,0.7,0.8,0.4), (𝑢3,0.6,0.8,0.2)}.  

𝐴2= {(𝑢1,0.5,0.7,0.3), (𝑢2,0.7,0.7,0.5), (𝑢3,0.8,0.6,0.1)}.  

𝐴3={(𝑢1,0.9,0.5,0.1), (𝑢2,0.7,0.6,0.4), (𝑢3,0.8,0.5,0.2)}.  

Unknown Sample 

 B = {(𝑢1,0.7,0.8,0.4), (𝑢2,0.8,0.5,0.3), (𝑢3,0.5,0.8,0.5)}. 

 For the comparative study, we consider all measures listed in section 4 along with the following 

existing divergence measures and similarity measures: 

𝑆7 =  
1

𝑛
 ∑ {

(𝜌𝐴
2(𝑦𝑖)∧𝜌𝐵

2(𝑦𝑖))

(𝜌𝐴
2(𝑦𝑖)∨𝜌𝐵

2(𝑦𝑖))
+  

((1−𝜃𝐴
2(𝑦𝑖))∧(1−𝜃𝐵

2(𝑦𝑖))

((1−𝜃𝐴
2(𝑦𝑖))∨(1−𝜃𝐵

2(𝑦𝑖))
+

((1−𝛿𝐴
2(𝑦𝑖))∧(1−𝛿𝐵

2(𝑦𝑖))

((1−𝛿𝐴
2(𝑦𝑖))∨(1−𝛿𝐵

2(𝑦𝑖))
}𝑛

𝑖=1 .         (Chai et al. [9]) 

𝐷𝑀4(𝐴, 𝐵) =  
1

𝑛
∑ [𝐷𝑇

𝑖(𝐴, 𝐵) +  𝐷𝐼
𝑖(𝐴, 𝐵) + 𝐷𝐹

𝑖(𝐴, 𝐵)]𝑛
𝑖=1 .                (Thao and Smarandache [36]) 

where, 𝐷𝑀𝑇
𝑖(𝐴, 𝐵) =  𝜌𝐴(𝑦𝑖) ln

2𝜌𝐴(𝑦𝑖)

𝜌𝐴(𝑦𝑖)+𝜌𝐵(𝑦𝑖)
+  𝜌𝐵(𝑦𝑖) ln

2𝜌𝐵(𝑦𝑖)

𝜌𝐴(𝑦𝑖)+𝜌𝐵(𝑦𝑖)
 

0

0.5

1

1.5

2

2.5

S1 S2 S3 S4 S5 S6 DM1 DM2 DM3 I(Di, P1) I(P1, Di)

Graphical representation of existing measures and 
proposed inaccuracy measure

D1(viral fever) D2(malaria) D3(typhoid)
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𝐷𝑀𝐼
𝑖(𝐴, 𝐵) =  𝜃𝐴(𝑦𝑖) ln

2𝜃𝐴(𝑦𝑖)

𝜃𝐴(𝑦𝑖) + 𝜃𝐵(𝑦𝑖)
+ 𝜃𝐵(𝑦𝑖) ln

2𝜃𝐵(𝑦𝑖)

𝜃𝐴(𝑦𝑖) + 𝜃𝐵(𝑦𝑖)
 

𝐷𝐹
𝑖(𝐴, 𝐵) =  𝛿𝐴(𝑦𝑖) ln

2𝛿𝐴(𝑦𝑖)

𝛿𝐴(𝑦𝑖) + 𝛿𝐵(𝑦𝑖)
+  𝛿𝐵(𝑦𝑖) ln

2𝛿𝐵(𝑦𝑖)

𝛿𝐴(𝑦𝑖) + 𝛿𝐵(𝑦𝑖)
 

𝐷𝑀𝑗(𝐴, 𝐵) = 

∑ 2𝛼 [
(√𝜌𝐴(𝑦𝑖) −  √𝜌𝐵(𝑦𝑖))

2(𝛼+1)

(𝜌𝐴(𝑦𝑖) + 𝜌𝐵(𝑦𝑖))𝛼
+  

(√1 − 𝜌𝐴(𝑦𝑖) −  √1 − 𝜌𝐵(𝑦𝑖))
2(𝛼+1)

(2 − 𝜌𝐴(𝑦𝑖) + 𝜌𝐵(𝑦𝑖))𝛼
]

𝑛

𝑖=1

+                   

∑ 2𝛼 [
(√𝜃𝐴(𝑦𝑖)− √𝜃𝐵(𝑦𝑖))

2(𝛼+1)

(𝜃𝐴(𝑦𝑖)+𝜃𝐵(𝑦𝑖))
𝛼 +  

(√1−𝜃𝐴(𝑦𝑖)− √1−𝜃𝐵(𝑦𝑖))
2(𝛼+1)

(2−𝜃𝐴(𝑦𝑖)+𝜃𝐵(𝑦𝑖))
𝛼 ]𝑛

𝑖=1 +

 ∑ 2𝛼 [
(√𝛿𝐴(𝑦𝑖)− √𝛿𝐵(𝑦𝑖))

2(𝛼+1)

(𝛿𝐴(𝑦𝑖)+𝛿𝐵(𝑦𝑖))
𝛼 + 

(√1−𝛿𝐴(𝑦𝑖)− √1−𝛿𝐵(𝑦𝑖))
2(𝛼+1)

(2−𝛿𝐴(𝑦𝑖)+𝛿𝐵(𝑦𝑖))
𝛼 ]𝑛

𝑖=1 ; 𝑗 = 5,6.  (Guleria et al. [37]) 

 

The result obtained by calculating the proposed inaccuracy measure, existing divergence measure, 

and similarity measure of unknown sample B with each pattern 𝐴𝑖 is shown in Table 7. 

Table 7. Result of the Existing Similarity Measure and Proposed Divergence Measure, along with 

the Degree of Confidence 

 (𝑨𝟏, 𝑩) (𝑨𝟐, 𝑩) (𝑨𝟑, 𝑩) DOC 

𝑺𝟏 0.7333 0.7333 0.7666 0.0666 

𝑺𝟐 0.7762 0.7036 0.6745 0.1743 

𝑺𝟑 0.7620 0.6781 0.64 0.2059 

𝑺𝟒 0.8666 0.7996 0.7776 0.156 

𝑺𝟓 0.9933 0.9622 0.9555 0.0689 

𝑺𝟔 0.9844 0.9319 0.9203 0.1166 

           S7 0.8021 0.7063 0.6993 0.1986 

𝑫𝟏 0.1333 0.2004 0.2224 0.1562 

𝑫𝟐 0.0067 0.0378 0.0445 0.0689 

𝑫𝟑 0.25 0.29 0.2966 0.0866 

𝑫𝑴𝟒 0.1537 0.2674 0.2951 0.25513 

𝑫𝑴𝟓(𝒘𝒉𝒆𝒏 𝜶 = 𝟏) 0.0352 0.1090 0.1161 0.1547 

𝑫𝑴𝟔(𝒘𝒉𝒆𝒏 𝜶 = 𝟒) 0.0001 0.0103 0.0032 0.0133 

𝑰𝑺𝑽𝑵𝑺(𝑩𝒊, 𝑨) 1.4854 1.7288 1.8444 0.6024 

𝑰𝑺𝑽𝑵𝑺(𝑨𝒊, 𝑩)) 1.2092 1.2554 1.1457 0.1732 
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Figure 3: Graphical representation of degree of confidence of various comparison measures 

Analysis: The highest value of similarity, the lowest value of divergence/inaccuracy, and the degree 

of confidence of the existing similarity, divergence measure, and the proposed inaccuracy measure 

are in bold in Table 7. The computed values of the comparison measures indicate that unknown 

sample B belongs to the pattern   𝐴1 . Only S1 shows a different result. Our proposed inaccuracy 

measure's highest value of DOC, when the direction of comparison is 𝐵𝑖 →  𝐴 . This justifies its 

effectiveness over other comparison measures, as illustrated graphically in the figure 3. 

6. Conclusion 

In this work, we have proposed an inaccuracy measure for SVNSs, to find directed discrimination 

between two SVNSs and studied some of their mathematical properties. The illustrative 

numerical problem in a corporate crisis of product launch has shown the applicability of the 

proposed measure. In addition, the advantage of the proposed measure has been justified by 

using a performance index DOC and in a medical diagnosis problem. The proposed asymmetric 

comparison measure may be impactful to the various studies in data science, machine learning 

and computer vision requiring a directed comparative analysis. The limitation of this article is 

that all the investigations have been done using hypothetical data. In future, we plan to 

investigate the applications of the suggested asymmetric comparison metrics in cluster analysis, 

multiple attribute decision-making, and medical diagnosis using real data sets. However, 

applying the proposed measures to actual data sets needs an efficient method of converting the 

crisp data to single valued neutrosohic data set without potential loss of information. Thus, 

formulating a suitable data conversion process because of the given scenario is also a problem 

for future investigations. Some recent studies [21-25] investigate the applicability of neutrosophic 
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methods in various disciplines like decision-making, pattern recognition, inventory 

management, pollution in megacities, etc. We also plan to explore the relevance of the proposed 

approach to these disciplines. 

Acknowledgements Authors are highly thankful to the Editor-in-Chief, Associate Editor to value 

this work and, anonymous reviewers for their constructive and insightful comments for the 

improvement of the paper. 
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