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Abstract: A neutrosophic number (NN) is a useful mathematical tool in indeterminacy theory. As 

the mixed form of an intuitionistic fuzzy set and NN, an orthopair neutrosophic number (ONN) can 

express the true indeterminate degree and the false indeterminate degree. In view of generalized 

ordered weighted operators, this article presents two generalized ordered weighted operators of 

ONNs, including an orthopair neutrosophic number generalized ordered weighted average 

(ONNGOWA) operator and an orthopair neutrosophic number generalized ordered weighted 

geometric (ONNGOWG) operator, and their characteristics. A multi-attribute decision-making 

(MADM) model is established by the weighted operation of the ONNGOWA and ONNGOWG 

operators. Finally, an example on the selection problem of electric vehicle design schemes is given 

to reflect the effectivity of the proposed MADM model in the scenario of ONNs. 

Keywords: orthopair neutrosophic number; generalized ordered weighted operator; multi-attribute 

decision-making 

 

 

1. Introduction 

In practical applications, it is difficult for decision makers to provide accurate evaluation values 

for complex decision-making problems in uncertain and incomplete circumstances. In this case, 

Zadeh presented the concept of fuzzy sets (FSs) [1]. On the basis of an extension of FS, Atanassov 

added a new parameter named a non-membership degree and defined an intuitionistic fuzzy set (IFS) 

[2]. Then, some scholars [3, 4] developed some intuitionistic fuzzy decision-making methods. Since 

various aggregation operators reveal important mathematical tools in multi-attribute decision-

making (MADM) process, various aggregation operators of intuitionistic fuzzy numbers (IFNs) were 

proposed by many scholars. For example, Xu and Cai [5] and Xu and Yager [6] proposed intuitionistic 

fuzzy weighted aggregation operators, and then some researchers introduced the generalized 

aggregation operator of IFNs [7], the generalized geometric aggregation operator of IFNs [8], the 

induced generalized aggregation operators of IFNs [9], the power average operators of trapezoidal 

IFNs [10], and the Heronian aggregation operators of IFNs [11]. However, IFS/IFN cannot reasonably 
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represent uncertain problems with uncertain membership and non-membership degrees. To express 

uncertain information, Smarandache proposed the concept of a neutrosophic number (NN) [12-14]. 

It is denoted by N = g + hI for I  [I, I+], where g is the determinate part and hI is the indeterminate 

part. Since NNs are very suitable for dealing with real problems with indeterminacy I  [I, I+], they 

were currently used in production planning problems [15], fault diagnosis [16], medicine assessment 

[17], prediction of traffic volume [18]. Recently, Ye et al. [19] defined the concept of an orthopair 

neutrosophic number (ONN) as a mixed form of IFN and NN, which can represent the hybrid 

information of true and false indeterminate degrees, and then proposed the score and accuracy 

functions of ONN and the ONN weighted arithmetic and geometric averaging (ONNWAA and 

ONNWGA) operators for MADM.  

With the complexity of the social and economic environment, it is difficult for a single decision-

maker to consider all aspects of a MADM problem and to give a reasonable decision result. 

Accordingly, multiple decision makers are needed to provide decision information together and to 

construct a group decision-making result. Then, the aggregation algorithm of group decision 

information is very critical in group decision-making problems. Since the generalized ordered 

weighted averaging (GOWA) aggregation operators [20] consider not only the importance of 

parameters but also the importance of parameter positions, they reveal better aggregation algorithms 

in information aggregations. However, the GOWA operators have not been investigated for 

aggregating ONN information. On the basis of an extension of the GOWA operators, this article 

proposes the GOWA and generalized ordered weighted geometric (GOWG) operators of ONNs and 

a MADM model using the weighted operation of the GOWA and GOWG operators of ONNs. 

The rest of the article consists of the following parts. The second part describes the related 

notions of ONNs, including the definition of ONN, the related operations of ONNs, as well as the 

score and accurate functions of ONNs and their sorting rules. The third part proposes an ONN 

generalized ordered weighted averaging (ONNGOWA) operator and an ONN generalized ordered 

weighted geometric (ONNGOWG) operator and indicates the characteristics of idempotency, 

boundedness, and monotonicity. The fourth part establishes a MADM model through the weighted 

operation of the ONNGOWA and ONNGOWG operators and addresses its decision steps. The fifth 

part applies the established MADM model to the choice problem of manufacturing schemes. The 

sixth part compares the established MADM model with the MADM model proposed in the previous 

literature [19]. The seventh part summarizes the conclusions and future research. 

2. Preliminaries of ONNs 

This section introduces the relevant notions of ONNs presented by Ye et al. [19]. 

Definition 1 [19]. Each ONN nj (j = 1, 2, ..., m) is given by 

nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI>,                         (1) 

where ej + fjI ⊆  [0, 1] and gj + hjI ⊆  [0, 1] for I  [I, I+] are the true indeterminate degree and the 

false indeterminate degree, such that the condition 0 ≤ supAj(I) + supBj(I) ≤ 1. 

Definition 2 [19]. Let n1 = <A1(I), B1(I)> = <e1 + f1I, g1 + h1I> and n2 = <A2(I), B2(I)> = <e2 + f2I, g2 + h2I> for I 

 [I, I+] be two ONNs. Then the operation rules of ONNs are presented as follows: 

(1) n1 ⊇ n2 ⟺ A1(I) ⊇ A2(I) and B1(I) ⊆  B2(I); 

(2) n1 = n2 ⟺ n1 ⊆  n2 and n1 ⊇ n2; 

(3) (n1)c = <B1(I), A1(I)> (Complement of n1); 

(4) n1 ⊕ n2 = 

 

 

1 2 1 2

1 2 1 2

1 2 1 2

[ i nf ( ) i nf ( ) i nf ( ) i nf ( ) ,

sup ( ) sup ( ) sup ( ) sup ( ) ] ,

[ i nf ( ) i nf ( ) , sup ( ) sup ( ) ]

A I A I A I A I

A I A I A I A I

B I B I B I B I

; 
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(5) n1  n2 =  

 

1 2 1 2

1 2 1 2

1 2 1 2

[ i nf ( ) i nf ( ) , sup ( ) sup ( ) ] ,

[ i nf ( ) i nf ( ) i nf ( ) i nf ( ) ,

sup ( ) sup ( ) sup ( ) sup ( ) ]

A I A I A I A I

B I B I B I B I

B I B I B I B I

; 

(6) αn1 = <[(1 − (1 − infA1(I))α, 1 − (1 − supA1(I))α], [(infB1(I))α, (supB1(I))α]> for α > 0; 

(7) (n1)α = <[(infA1(I))α, (supA1(I))α], [(1 − (1 − infB1(I))α, 1 − (1 − supB1(I))α]> for α > 0. 

To rank ONNs nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2) with I  [I, I+], the accuracy function of 

ONN is given as [19] 

T(nj) = {infA1(I) + infB1(I) + supA1(I) + supB1(I)}/2  

= {[2ej + fj(I + I+)] + [2gj + hj(I + I+)]}/2, for T(nj)  [0, 1].                   (2) 

The score function of ONN is given as [19] 

S(nj) = {infA1(I) − infB1(I) + supA1(I) − supB1(I)}/2  

= {[2ej + fj(I + I+)] − [2gj + hj(I + I+)]}/2, for S(nj)  [1, 1].                   (3) 

The ranking rules are described as follows [19]: 

(1) If S(n1) > S(n2), then n1 > n2; 

(2) If S(n1) = S(n2) and T(n1) > T(n2), then n1 > n2; 

(3) If S(n1) = S(n2) and T(n1) = T(n2), then n1 = n2. 

3. Two Generalized Ordered Weighted Aggregation Operators of ONNs 

This section proposes the ONNGOWA and ONNGOWG operators through the operation rules 

in Definition 2. 

3.1. ONNGOWA Operator 

The ONNGOWA operator for a group of ONNs can be derived from the operation rules in 

Definition 2. 

Definition 3. Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. Thus, the 

ONNGOWA operator is defined below: 

ONNGOWA(n1, n2, ..., nm) = 






 
 




1

1

m

j j
j

v n ,                             (4) 

where vj (j = 1, 2, ..., m) is the weight of nj for 0 ≤ vj ≤ 1 and 



1

1
m

j
j

v . 

Theorem 1. Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. Thus, the value 

of the ONNGOWA operator is still ONN, which is obtained by the following formula: 

ONNGOWA(n1, n2, ..., nm) = 






 
 




1

1

m

j j
j

v n  

   

   

  

  

 

 

 

 

 
                              


 

                                  

 

 

1 1

1 1

1 1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v vm m

j j j j
j j

v vm m

j j j j
j j

e f I e f I

g h I g h I

, (5) 

where vj (j = 1, 2, ..., m) is the weight of nj for 0 ≤ vj ≤ 1 and 



1

1
m

j
j

v . 

Proof:  



Neutrosophic Sets and Systems, Vol. 55, 2023     38   

 

 

Jiancheng Chen, Jun Ye, Angyan Tu, Generalized OWA Operator of Orthopair Neutrosophic Numbers and Their 
Application in Multiple Attribute Decision-Making Problems 

According to the relevant operation rules in Definition 2, Eq. (5) can be verified below. 

   

   

 



 

 

 

                              


                                  

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v v

j j j j

j j
v v

j j j j

e f I e f I

v n

g h I g h I

. (6) 

Then, we get the following equation: 

   

   

 



 

 

 


 

 

                              


                                  

 



 

1 1

1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v vm m

j j j j
m j j

j j
v vm mj

j j j j
j j

e f I e f I

v n

g h I g h I

. (7) 

We can further get the result: 






 
 




1

1

m

j j
j

v n  

   

   

  

  

 

 

 

 

 
                              

 
                                  

 

 

1 1

1 1

1 1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v vm m

j j j j
j j

v vm m

j j j j
j j

e f I e f I

g h I g h I

. (8) 

So, the proof of the ONNGOWA operator is completed. 

Theorem 2. The ONNGOWA operator expressed by Eq. (5) has the following properties: 

(a) Idempotency: Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. If nj = n 

(j = 1, 2, …, m), then ONNGOWA(n1, n2, ..., nm) = n. 

(b) Boundedness: Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs, and then 

let the maximum and minimum ONNs be the following values: 

       max max ,max , min ,minj j j j j j j j
j jj j

n e f I e f I g h I g h I          
     

, 

       min min ,min , max ,maxj j j j j j j j
j j j j

n e f I e f I g h I g h I         
      

.  (9) 

Thus, the inequality nmin ≤ ONNGOWA(n1, n2, ..., nm) ≤ nmax exists. 

(c) Monotonicity: Let nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> and nj∗ = <Aj*(I), Bj*(I)> (j = 1, 2, ..., m) be two 

groups of ONNs. If nj ≤ nj∗, then there is the inequality ONNGOWA(n1, n2, ..., nm) ≤ 

ONNGOWA(n1∗, n2∗, ..., nm∗). 

Proof: 

(a) When nj = n (j = 1, 2, ..., m), the result of Eq. (5) is obtained below: 

ONNGOWA(n1, n2, ..., nm) = 






 
 




1

1

m

j j
j

v n
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   

   

  

  

 

 

 

 

 
                              


 

                                  

 

 

1 1

1 1

1 1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

j j

j j

v vm m

j j j j
j j

v vm m

j j j j
j j

e f I e f I

g h I g h I

   

   

 
 

 
 

 

 

 

 

 
                    
          
 


 

                        
          

 

1 1

1 1

1 1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

m mv vj j

j j

m mv vj j

j j

e f I e f I

g hI g hI

   

   

  

  

 

 

 
                  
       
 


 

                      
       
 

1 1

1 1

1 1 , 1 1 ,

1 1 1 1 ,1 1 1 1

e f I e f I

g hI g hI
 

   

   

  

  

 

 

 
            
    
 


 

                
    
 
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, ,

,

e f I e f I
n

g hI g hI
.                                                (10) 

(b) Since nmax and nmin are the maximum and minimum ONNs, there is nmin ≤ nj ≤ nmax. Hence, the 

inequality 
 mi n1

m

jj
v n ≤

 1

m

j jj
v n ≤

 max1

m

jj
v n  is established. According to the property (a), 

there exists nmin ≤
 1

m

j jj
v n ≤ nmax, i.e., nmin ≤ ONNGOWA(n1, n2, ..., nm) ≤ nmax. 

(c) If nj ≤ nj*, then the inequality 
 1

m

j jj
v n ≤

 *

1

m

j jj
v n  is established, i.e., the inequality 

ONNGOWA(n1, n2, ..., nm) ≤ ONNGOWA(n1*, n2*, ..., nm*) holds. 

Thus, we complete the proof of Theorem 2. 
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3.2. ONNGOWG Operator 

The ONNGOWG operator for a group of ONNs can be derived from the operation rules in 

Definition 2. 

Definition 4. Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. Thus, the 

ONNGOWG operator is defined below: 

ONNGOWG(n1, n2, ..., nm) = 






 
 




1

1

j

m
v

j
j

n ,

                        

(11) 

where vj (j = 1, 2, ..., m) is the weight of nj for 0 ≤ vj ≤ 1 and 



1

m

j
j

v = 1. 

Theorem 3. Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. Thus, the value 

of the ONNGOWG operator is still ONN, which is obtained by the following formula: 

ONNGOWG(n1, n2, ..., nm) = 






 
 




1

1

j

m
v

j
j

n

 

   

   

  

  

 

 

 

 

 
                                  


 
                              

 

 
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1 1

1 1

1 1

1 1 1 1 ,1 1 1 1 ,

1 1 , 1 1

j j

j j

v vm m

j j j j
j j

v vm m

j j j j
j j

e f I e f I

g h I g h I

, (12) 

where vj (j = 1, 2, …, m) is the weight of nj for 0 ≤ vj ≤ 1 and 



1

m

j
j

v =1. 

The verification process of Eq. (12) is similar to that of Theorem 1, so it is omitted. 

Theorem 4. The ONNGOWG operator of Eq. (12) has the following properties: 

(a) Idempotency: Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs. If nj = n 

(j = 1, 2, ..., m), then ONNGOWG(n1, n2, ..., nm) = n. 

(b) Boundedness: Set nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> (j = 1, 2, ..., m) as a group of ONNs, and then 

let the maximum and minimum ONNs: 

        max max ,max , min ,minj j j j j j j j
j jj j

n e f I e f I g h I g h I   
 
     
 
 

, 

        min min ,min , max ,maxj j j j j j j j
j j j j

n e f I e f I g h I g h I   
 
     
 
 

.  (13) 

Thus, nmin ≤ ONNGOWG(n1, n2, ..., nm) ≤ nmax. 

(c) Monotonicity: Let nj = <Aj(I), Bj(I)> = <ej + fjI, gj + hjI> and nj∗ = <Aj*(I), Bj*(I)> (j = 1, 2, ..., m) be two 

groups of ONNs. If nj ≤ nj∗, then ONNGOWG(n1, n2, ..., nm) ≤ ONNGOWG(n1∗, n2∗, ..., nm∗). 

4. MADM Model Based on the ONNGOWA and ONNGOWG Operators 

In this section, a MADM model are established based on the weighted operation of the 

ONNGOWA and ONNGOWG operators to perform MADM problems with ONNs. 

For a MADM problem, D = {D1, D2, ..., Dq} represents a set of q alternatives and then F = {f1, f2, ..., 

fm} represents a set of m attributes. The importance of each attribute fj (j = 1, 2, ..., m) is determined by 
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the weight vj. Experts/decision makers evaluate the satisfactory levels of each alternative Di (i = 1, 2, 

..., q) relative to the attributes fj (j = 1, 2, ..., m) through true and falsity indeterminate degrees, which 

are expressed as the ONNs nij = <Aij(I), Bij(I)> = <eij + fijI, gij + hijI> for Aij(I), Bij(I)  [0, 1], I  [I, I+], 

and 0 ≤ supAij(I) + supBij(I) ≤ 1. Thus, the decision matrix of ONNs can be expressed as N = (nij)q×m. 

Therefore, the MADM model according to the weighted operation of the ONNGOWA and 

ONNGOWG operators is established through the following steps: 

Step 1: Based on Eqs. (5) and (12), the aggregated ONNs n1i and n2i are obtained by the following 

equations: 

n1i = ONNGOWA(ni1, ni2, ..., nim) = 






 
 




1

1

m

j i j
j

v n  
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(14) 

n2i = ONNGOWG(ni1, ni2, ..., nim) = 






 
 



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1
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.

    

(15) 

Step 2: The weighted operation of the ONNGOWA and ONNGOWG operators with the weights 

ψ1 and ψ2 =1 − ψ1 for ψ1 ∈ [0, 1] is obtained by the following equation: 

       
1 1 2 2 1 1 1 2

(1 )
i i i i i

H n n n n
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Step 3: The values of S(Hi) and T(Hi) (i = 1, 2, ..., q) are obtained by Eqs. (2) and (3). 

Step 4: The alternatives are sorted according to the sorting rules and the best one is chosen. 

Step 5: End. 
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5. Illustrative Example 

In this section, the MADM model based on the weighted operation of the ONNGOWA and 

ONNGOWG operators is applied to the selection of electric vehicle design schemes. 

A manufacturing company needs to choose the best design scheme of electric vehicles, the 

technique department preliminarily provides four design schemes of electric vehicles as a set of 

alternatives D = {D1, D2, D3, D4}. Each alternative is satisfactorily assessed by the three attributes: 

charging rate (f1), driving range (f2), and manufacturing cost (f3). The weight vector of the three 

attributes is specified by v = (0.36, 0.3, 0.34). Therefore, experts/decision makers evaluate the four 

alternatives that satisfy these attributes by ONNs nij = <Aij(I), Bij(I)> = <eij + fijI, gij + hijI> (i = 1, 2, 3, 4 

and j= 1, 2, 3) for Aij(I), Bij(I)  [0, 1], I  [I, I+], and 0 ≤ supAij(I) + supBij(I) ≤ 1. Thus, the ONN decision 

matrix is listed in Table 1. 

 

Table 1. The decision matrix of ONNs. 

 f1 f2 f3 

D1 <0.5 + 0.2I, 0.1 + 0.1I> <0.6 + 0.1I, 0.1 + 0.1I> <0.5 + 0.1I, 0.1 + 0.2I> 

D2 <0.6 + 0.1I, 0.1 + 0.1I> <0.6 + 0.2I, 0.1 + 0.1I> <0.6 + 0.1I, 0.1 + 0.1I> 

D3 <0.6 + 0.1I, 0.1 + 0.1I> <0.6 + 0.1I, 0.1 + 0.2I> <0.5 + 0.2I, 0.1 + 0.2I> 

D4 <0.5 + 0.2I, 0.1 + 0.1I> <0.6 + 0.2I, 0.1 + 0.1I> <0.7 + 0.1I, 0.1 + 0.1I> 

 

Regarding the MADM problem in an ONN environment, the MADM steps are given below. 

Step 1: Using Eqs. (14) and (15) with δ = 0.5 and I  [I, I+] = [0, 0.3], the aggregated ONNs n1i 

and n2i (i = 1, 2, 3, 4) are obtained below: 

   
   
      
   
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<0. 5318 + 0. 5724 , 0. 1000 + 0. 1395 >
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<0. 5679 + 0. 6073 , 0. 1000 + 0. 1485 >
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n I I

n I I

n I I
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21

22

23

24

<0. 5288 + 0. 5700 , 0. 1000 + 0. 1401 >

<0. 6000 + 0. 6389 , 0. 1000 + 0. 1300 >

<0. 5647 + 0. 6057 , 0. 1000 + 0. 1491 >

<0. 5948 + 0. 6461 , 0. 1000 + 0. 1300 >

n I I

n I I

n I I

I In

.

 

Step 2: By Eq. (16) for ψ1 = 0.5 and I  [I, I+] = [0, 0.3], the values of Hi are given below: 

H1 = <0.5303 + 0.7017I, 0.1000 + 0.1419I>, H2 = <0.6000 + 0.7917I, 0.1000 + 0.1390I>, 

H3 = <0.5663 + 0.7483I, 0.1000 + 0.1446I>, and H4 = <0.6001 + 0.7952I, 0.1000 + 0.1390I>. 

Step 3: Using Eq. (3), the values of S(Hi) for the alternatives Di (i = 1, 2, 3, 4) are given as follows: 

S(H1) = 0.495, S(H2) = 0.5763, S(H3) = 0.535, and S(H4) = 0.5781. 

Step 4: Since S(H4) > S(H2) > S(H3) > S(H1), the sorting order of the four alternatives is D4 > D2 > 

D3 > D1, then the best one is D4. 

In order to reflect the influence of δ and ψ1 on the decision results of the proposed MADM 

model, the corresponding ranking results are shown in Table 2. 

In view of the ranking results shown in Table 2, different parameter values of δ and different 

weight values of ψ1 can influence the ranking order of the four alternatives, which reveals the 

flexibility of the decision results. 
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Table 2. Values of S(Hi) and ranking orders corresponding to δ = 0.3, 0.7, 1 and ψ1 = 0, 0.1, 0.3, 0.5, 0.7, 1. 

δ ψ1 [I, I+] S(H1), S(H2), S(H3), S(H4) Ranking order The best one 

δ = 0.3 

 

ψ1 = 0.0 [0, 0.3] 0.4935, 0.5763, 0.5335, 0.5733 D2 > D4 > D3 > D1 D2 

ψ1 = 0.1 [0, 0.3] 0.4939, 0.5763, 0.5338, 0.5744 D2 > D4 > D3 > D1 D2 

ψ1 = 0.3 [0, 0.3] 0.4944, 0.5763, 0.5344, 0.5764 D4 > D2 > D3 > D1 D4 

ψ1 = 0.5 [0, 0.3] 0.4950, 0.5763, 0.5350, 0.5783 D4 > D2 > D3 > D1 D4 

ψ1 = 0.7 [0, 0.3] 0.4956, 0.5763, 0.5356, 0.5803 D4 > D2 > D3 > D1 D4 

ψ1 = 1.0 [0, 0.3] 0.4965, 0.5764, 0.5365, 0.5832 D4 > D2 > D3 > D1 D4 

δ = 0.7 

ψ1 = 0.0 [0, 0.3] 0.4929, 0.5763, 0.5328, 0.5711 D2 > D4 > D3 > D1 D2 

ψ1 = 0.1 [0, 0.3] 0.4933, 0.5763, 0.5333, 0.5725 D2 > D4 > D3 > D1 D2 

ψ1 = 0.3 [0, 0.3] 0.4941, 0.5763, 0.5340, 0.5752 D2 > D4 > D3 > D1 D2 

ψ1 = 0.5 [0, 0.3] 0.4949, 0.5763, 0.5349, 0.5779 D4 > D2 > D3 > D1 D4 

ψ1 = 0.7 [0, 0.3] 0.4958, 0.5763, 0.5357, 0.5806 D4 > D2 > D3 > D1 D4 

ψ1 = 1.0 [0, 0.3] 0.4969, 0.5764, 0.5369, 0.5846 D4 > D2 > D3 > D1 D4 

δ = 1 

ψ1 = 0.0 [0, 0.3] 0.4924, 0.5763, 0.5323, 0.5691 D2 > D4 > D3 > D1 D2 

ψ1 = 0.1 [0, 0.3] 0.4929, 0.5763, 0.5328, 0.5709 D2 > D4 > D3 > D1 D2 

ψ1 = 0.3 [0, 0.3] 0.4939, 0.5763, 0.5338, 0.5743 D2 > D4 > D3 > D1 D2 

ψ1 = 0.5 [0, 0.3] 0.4949, 0.5763, 0.5348, 0.5775 D4 > D2 > D3 > D1 D4 

ψ1 = 0.7 [0, 0.3] 0.4959, 0.5764, 0.5358, 0.5808 D4 > D2 > D3 > D1 D4 

ψ1 = 1.0 [0, 0.3] 0.4974, 0.5764, 0.5374, 0.5856 D4 > D2 > D3 > D1 D4 

6. Comparative Analysis 

To prove the effectiveness of the proposed model, the proposed MADM model based on the 

weighted operation of the ONNGOWA and ONNGOWG operators is compared with the MADM 

model proposed in [19]. The decision results of the existing MADM model for the above example are 

summarized in Table 3. 

Table 3. The best one and ranking order corresponding to the existing MADM model [19]. 

Aggregation 

operator 
Aggregated value Score value Ranking order 

The best 

one 

ONNWGA 

operator for I = 

[0, 0.3] [19] 

0.5281, 0.6989, 0.1000, 0.1448 

0.6342, 0.8363, 0.1000, 0.1390 

0.5639, 0.7480, 0.1000, 0.1453 

0.6323, 0.8344, 0.1000, 0.1390 

S(Hi) = 

(0.4924, 0.5763, 

0.5323, 0.5691) 

D2 > D4 > D3 > D1 D2 

ONNWAA 

operator for I = 

[0, 0.3] [19] 

0.5324, 0.6274, 0.1000, 0.1911 

0.6000, 0.6928, 0.1000, 0.1700 

0.5685, 0.6601, 0.1000, 0.2120 

0.6373, 0.7506, 0.1000, 0.1700 

S(pj, I) = 

(0.4974, 0.5764, 

0.5374, 0.5857) 

D4 > D2 > D3 > D1 D4 

 

Regarding the decision results in Tables 2 and 3, the ranking results of the design schemes and 

the best one based on the proposed MADM model with δ = 1, ψ1 = 0, 1, and I = [0, 0.3] are the same as 

those based on the existing MADM model [19] because the ONNWAA and ONNWGA operators [19] 
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are the special cases of the ONNGOWA and ONNGOWG operators with δ = 1 and ψ1 = 0, 1. However, 

the proposed MADM model contains the advantage of flexible decision making, while the existing 

MADM model [19] lacks flexibility in the decision process. Therefore, the proposed MADM model 

reveals the obvious superiority over the existing MADM model [19] in an ONN circumstance. 

7. Conclusions 

In this paper, we presented the ONNGOWA and ONNGOWG operators based on the concepts 

of ONNs and the GOWA operators to reach more flexible aggregation operations than the existing 

ONNWAA and ONNWGA operators [19]. Then, the proposed MADM model based on the weighted 

operation of the ONNGOWA and ONNGOWG operators was established to solve flexible MAGM 

problems in an uncertain circumstance. However, the application of the proposed MADM model in 

an illustrative example demonstrated its effectivity, and then the comparative results reflected that 

the proposed MADM model revealed the advantage of flexible decision making in an ONN 

circumstance. 

However, there are still many aggregation operators of ONNs for MADM to need further 

research and to apply them in practical areas, including supplier selection, fault diagnosis, medical 

diagnosis, etc. 
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