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Abstract:

The symbolic n-plithogenic sets and algebraic structures are a new branch of pure algebra
released as new generalizations of classical algebraic structures.

The main goal of this paper is to define for the first time the concept of symbolic
2-plithogenic module over a symbolic 2-plithogenic ring. Algebraic substructures of
symbolic 2-plithogenic modules such as sub-modules, AH-homomorphisms, and
algebraic basis.
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Introduction

The concept of symbolic plithogenic sets was defined by Smarandache in [13-17 ,30], and he
suggested an algebraic approach of these sets. Laterally, the concept of symbolic
2-plithogenic rings [31], where the concepts such as symbolic AH-ideals, and

AH-homomorphisms were presented and discussed.

In general, we can say that symbolic plithogenic structures are very close to neutrosophic
algebraic structures with many differences in the definition of multiplication operation
[1-10].

Let R be a ring, the symbolic 2-plithogenic ring is defined as follows:

2 —SPg ={ap + a1 Py + ayPy; a; € R, Pi* = P, Py X P, = P12y = Po ).

Smarandache has defined algebraic operations on 2 — SPy as follows:
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Addition:

[ag + a;P; + ayP,] + [by + b Py + b, Py] = (ag + by) + (a; + by)P; + (a, + by)P,.
Multiplication:

[ag + a,Py + a,P,).[by + byP; + b, P,] = agby + aghy Py + agb,P, + a;boP;* + a b, PP, +
a,boP, + a,by PiP, + ayb,Py% + a; by Py Py = agby + (aghy + a;by + aiby)P; + (agh, + a;b, +
a;by + a,b; + a;b,)P;,.

In this paper, we study the symbolic 2-plithogenic modules according to many points of
view, where substructures such as AH-submodules, and AH-homomorphisms will be
presented in terms of theorems. In addition, many examples will be illustrated to explain

the novelty of these ideas.

Main Discussion

Definition.

Let M be a module over the ring R, let 2—SP; be the corresponding symbolic
2-plithogenic ring.

2 —SPy ={x+yP, +2zPy; x,y,2 € R, P, = P,,P,P, = P,P; = P,}.

We define the symbolic 2-plithogenic module as follows:

2 —SPy =M + MP, + MP, = {a + bP, + cP,; a,b,c € M}.

Operations on 2 — SPy, can be defined as follows:

Addition: (+):2 — SPy, — 2 — SPy, such that:

[xo + %1 Py + x5 Po] + [yo + ¥1 Py + ¥52P2] = (%0 + ¥0) + (21 + y1)P1 + (x2 + ¥2) P,
Multiplication: (.):2 — SPg X 2 — SPy = 2 — SPy, such that:

[a+ bP; + cPy].[xg + x1P; + x,P,] = axy + (axy + bxy + bx,)P; + (ax, + bx, + cxg + cx; +
cxy)P;.

where x;,y; € M,a,b,c €ER

Theorem.

Let (2 — SPy,+,.) Is amodule over the ring 2 — SPp.

Proof.

Let X =xo +x1P; + x,P,,Y =yg +y, Py +y, P, €2—-SPy,, A=ay+a;P, +a,P,,B=>by+
b P; + b, P, € 2 — SP, we have:
1LX=X,(X+N+Z=X+T+DX+(-X)=-X+X=0X+0=0+X=X
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Also
AX +Y) = (ag + arPy + azPy)[(xo + yo) + (x1 + y1)P1 + (x2 + ¥2)P,]
= ag(xg +yo) + (ao(x1 +y1) + a1 (xo + yo) + a;(x; + 3’1))P1
+ (ao(xz +y2) +a;(x; +y2) + a(xg +¥o) + az(xy +y1) +ax(x, + yZ))PZ
=AX+AY
(A+ B)X = [(ao + bo) + (a + b1)Py + (ay + ba)P2](xo + x1 Py + x,P5)
= (ap + bo)xo + ((ao + bo)xy + (ay + by)xe + (ag + b1)x1)P1
+ ((ao + bg)x; + (ag + by)x; + (az + by)xe + (az + by)xg + (a + bz)xz)Pz
=AX+BX
(A.B).X = [agby + (agby + a1bg + a1b)P; + (agb, + a;b, + ayby + ayby + ayzby)Py](xy +
X1 Py + x,P;) = agboxg + [agboxy + (agby + a1by + ayby)xg + (agby + a1bg + a;by)x41]P; +
[agbox, + (agh, + ayby + a;b1)x, + (agb, + a1b, + aybg + ayby + ayby)xy + (agh, + a1b, +
ay by + azby + azby)x1 + (agh, + ayby + azbg + aby + azby)x;]P, = A(B.X).
Example.
Let M = Z3 be the module over the ring R =.
The corresponding symbolic 2-plithogenic vector space over 2 — SP; is:
2 —SPzs = {(x0,¥0,20) + (x1,¥1,21)P1 + (X2, ¥2,22) P2; X, Vi, 2; € Z}
Consider X = (1,1,0) + (2,-1,1)P; + (0,1,-1)P, € 2—SP,;3,A=2+ P, + P, € 2—SP,. We
have:
A.X =(22,0)+[(4,-2,2)+(1,1,0) + (2,—1,1)]P; +[(0,2,2) + (0,1,1) + (1,1,0) +
(2,-1,1)+ (0,1,1)]P, = (2,2,0) + (7,—2,3)P; + (3,4,5)P,.
Definition.
Let 2 — SPy be a symbolic 2-plithogenic module over 2 — SPg, let My, M;, M, be the three
sub-modules of V, we define the AH-submodule as follows:
W = My + MyP, + MyP, = {x + yP, + zP,; x € Mo,y € My, z € M,}.
If My = M, = M,, then W is called an AHS-sub-module.
Example.
Consider 2—-SP,s , we have M,={(a0,0); a€R}M, ={(0,b,0); bER}M,=
{(0,0,0); c € Z} are three sub-modules of M = Z3.
W =M+ M P, + MyP, = {(a,0,0) + (0,b,0)P; + (0,0,c)P,; a,b,c € Z} is an AH-submodule
of 2 —SP,a.
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T=M;+MP, + M;P, ={(0,a,0) + (0,b,0)P, + (0,c,0)P,; a,b,c € Z} is an
AHS-submodule.
Theorem.
Let 2—-SPy be a symbolic 2-plithogenic module over 2—-SP;, let W be an
AHS-submodule of 2 — SPy;, then W is a submodule of 2 — SPy,.
Proof.
Suppose that W is an AHS-submodule, then there exists a submodule M, < M, such that
W =My + MyP; + MyP, = {x + yP; + zP5; x,y,z € M,}.
Let X =x¢ +x,P; + x,P,,Y =y, +y,P; +y,P, €W, then:
X—=Y=0—yo)+ (1 —y)Pr+ (g =y )P, €W
VA=ay+a,P; +a,P, €2 —SPg, then:
A X = agxy + (agx; + a;xg + ayx1)Py + (apgxy + ayx, + azxy + azxq + ayx,)P, € W, that is
because agxy € My, agx; + a1xg + a;x; € My, agxy + a1x, + azxg + ax; + ayx, € My, this
implies the proof.
Definition.
Let V,W be two modules over the ring R. Let 2 —SP,, 2 — 5Py, be the corresponding
symbolic 2-plithogenic modules over 2 — SPy.
Let Lo, L1,Ly:V > W be three homomorphisms, we define the AH-homomorphism as
follows:
L:2—=SP, — 2 —=SPy,L = Ly + L1 P, + LoPy ; L(x + yPy + zP,) = Lo(x) + Ly (y)P; + L, (2)P,.
If Lo =L, = L,, then L is called AHS-homomorphism.
Definition.
Let L = Lo+ LiP; + LyPy:2 — SPy —» 2 — SPy, be an AH-homomorphism, we define:

1. AH —ker(L) = ker(Ly) + ker(L,)P, + ker(L,)P, = {x + yP; + zP,}; x € ker(L,),y €

ker(L,),z € ker(L,).
2. AH —Im(L) = Im(Ly) + Im(L))P; + Im(L,)P, = {a + bP, + cP,};a € Im(Ly),b €
Im(Ly),c € Im(Ly)

If L is AHS-linear homomorphism, then we get AHS — kernel, AHS — Image.
Theorem.
Let L =Ly+ LiP; + LyP,:2 —SPy > 2 — SPy, be an AH-homomorphism, then:

1. AH — ker(L) is AH-submodule of 2 — SPy.
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2. AH — Im(L) is AH-submodule of 2 — SPy,.
Proof.
1. Since ker(Ly),ker(L,), ker(L,) are submodules of V, then AH — ker(L) is an
AH-submodule of 2 — SPy.
2. Itis holds by the same.
Remark.
If Ly, Ly, L, are isomorphisms, then ker(Ly) = ker(L,) = ker(L,) = {0},Im(Ly) = Im(L,) =
Im(L,) = W, thus AH — ker(L) = {0},AH — Im(L) = 2 — SPy,.
Example.
Take V=23, W =Z, Ly,Ly,L,:V - W such that:
Lo(x,y,2) = (x), L1(x,,2) = (), L.(x,y,2) = (2)
The corresponding AH-homomorphism is:
L=Ly+LP, +L,Py:2—SPys — 2 — SPy:
L{(x0,¥0,20) + (X1, ¥1,21) Py + (X2, Y2, 22)P;] = Lo(x0, Y0, 20) + L1 (x1,y1,21)Py +
Ly (x2,¥2,22)P; = (x0) + (y1)Py + (22)Pa.
For example, take X = (1,9,8) + (9,10,—9)P; + (3,2,1)P,, then:
LX) =1+ (10)P, + P,.

( ker(Lo) = { (0,¥0,20); Yo,20 € Z}
ker(L;) = {(x1,0,2,); x1,2, € Z}
ker(Ly) = {(x2,¥2,0); x3,¥, € Z}
AH — ker(L) = {(0,¥9,20) + (x1,0,2,)P; + (x2,¥2,0)P2; Y0, Zo, X1, 21, X2, Y2 € Z}
Also,
Im(Ly) = Z
Im(L) =Z
Im(L,) =Z

AH —Im(L) =Z + ZP, + ZP, = 2 — SP,,

Theorem.

Let L=f+fP + fP;:2—SP, > 2 — SPy, be an AHS-homomorphism, then L is a module
homomorphism.

Proof.

LetX:xO+X1P1+x2P2,Y=yO +y1P1 +y2P2€2—Spv,then:
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LX+Y) = f(xo+yo) + f(x1 +y1)P1 + f(x2 + ¥2) P,
= [f(xo) + fF(x)Py + f(x2)Po] + [f (o) + f(y1) Py + f(¥2)Po] = L(X) + L(Y)
Let A =ay+ a,P, + a,P, € 2 — SP, then:
L(A.X) = f(agxg) + f(apgxs + ay1xg + ayx1) Py + f(apgx; + azxg + azx, + a;x, + azx,)P,
= aof (xo) + (aof (x1) + arf (xo) + as f (x1))Py
+ (aof (x2) + azf (x0) + azf (x2) + ay f (xz) + azf (x1)) P2
= [ag + a1 Py + azP2]. [f (xo) + f(x1)Py + f(xz)P;] = A. L(X)
Thus, L is a module homomorphism.
The algebraic relations between symbolic 2-plithogenic modules and neutrosophic
modules .
Theorem.
Let M be a module over the ring R, consider M(I) = M + MI = {x + yI;x,y € M} is the
corresponding neutrosophic module over the neutrosophic ring R(I) = {a + bl;a,b € R}.
M(ly,I,) =M+ Ml + MI, ={x +yl, +zl;;x,y,z€ M} is the corresponding refined
neutrosophic module over the refined neutrosophic ring R(I3,1;) = {a + bl; + cl;a,b,c €
R}.
2—SPy =M+ MP; + MP, = {x + yP; + zP;;x,y,z € M} is the corresponding symbolic
2-plithogenic module over 2 — SPg, then:
1. 2 —SPy is semi homomorphic to M(I).
2. 2 —SPy is semiisomorphic to M(Iy,1).
Proof.
1. Wedefine f:2 —SPy —» M(I),g:2 — SPg = R(I) such that:
fx+yPi+2zP) =x+yl;x,y,Zz€M
gla+bP;+cP,)=a+bl;a,b,c €ER
We have the following;:
g is a ring homomorphism, that is because:
A=ay+aP; +ayP;,B=>by+ b P, + b,P,; a;,b; €R, then:
If A =B, then a; = b; forall i, thus ay + a;I = by + b,l,i.e. g(A) = g(B).
g(A+B) = gl(ao + bo) + (a + b1)P; + (az + by)P;] = ag + by + (a1 + by)I = g(A) + g(B).
g(A.B) = glaghy + (aghy + a1by + a1b1)P; + (agh, + a1b, + ayb + ayby + ayb,)P,] =
agbg + (aghy + a1bg + a1by)I = (ag + a11)(bg + byI) = g(A).g(B).
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On the other hand, f is well defined, that is because:

If X =xg+xP;+x,P,,Y =yy+y,P; +y,P,, then x; =y; for all i, hence aq + a;I = by +

b,I, thus f(X) = f(Y).

f preserves addition, that is because:

For X = x¢ + x,P; + x,P,,Y =y + y1 P, + y,P,, we have:

FX+Y) = fllxo +y0) + (x1 + y1)Py + (x2 + ¥2)Pal = %0 + yo + (x1 + y1)I = f(X) + f(V).

f preserves multiplication, that is because:

For A =ay + a;P; + a,P, € 2 — SPy, we have:

f(A.X) = agxo + (apxy + arxo + ayx;)1 = (ao + a1 1) (xo + x11) = g(A). f(X)

Thus f is a semi module homomorphism.

We define f:2—SPy - M(1,1,), g:2—SPg - M(1;,1,), where f(x+yP;+2zP,) =x+

zIl; + yl, and g(a + bP; + cP,) =a+cly + bly;x,y,z € M,a,b,c ER.

(g) is well defined, that is because:

If A=ay+ a,P, +a,P,,B = by + b P; + b,P,, then:

ag = aq,by = by, cy = c1, hence: ag + ¢yl + byl, = a4 + ¢;1; + b11,, so that g(A) = g(B).

(f) is well defined by a similar discussion.

(g) is one-to-one mapping, that is because:

ker(g) ={a+ bP, + cP,;g(a+ bP, +cP,) =0} =0

Im(g) ={a+cl, + bl,;g(a+ bP, +cP,) € R(I;,I,); A€ 2 —SPg,g(A) = a +cl; + bl,} =

R(I1y,1,).

(f) is one-to-one mapping, it can be proved by the same.

(g9) and (f) preserve addition, that is because:

Consider A=ay+ a,P; + a,P,,B=by+ bPy+b,P, €2 —SPs, X =xy+x,P; + x,P,, Y =

Yo + V1P, + y,P, € 2 — SPy, then:

g(A+ B) = gl(ag + bo) + (ay + by)Py + (az + by)P;] = ag + by + (ay + b))y + (az + b)),
=g(A) +g(B)

fX+Y)=f(X)+ f(Y) by asimilar discussion.

(g9) preserves multiplication, that is because:

g(A.B) = agby + (aghy + aybg + ay by, + a1b, + ayby)1l; + (aghy + a1 by + a1by)1, =

g(4).g(B).

(f) is semi module homomorphism, that is because:
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f(A.X) = agxg + (apxy + azxg + azx; + a;x, + ax1)ly + (agxy + a1 xo + a1x1)1;
= (ap + arl1 + ax 1) (%o + x211 + x11;) = g(4). f(X)

The basis of a symbolic 2-plithogenic module:

Theorem.

Let T = {ty, ..., t,} be abasis of the module V over the ring R, then the set:

Tp ={t; + (tj — t;)P1 + (tx — tj)P;; 1 < i,j,k < n} is a basis of 2 — SPy.

Proof.

Let X = x¢ +x1P; + x,P, € 2 — SPy, xg,%1, %, € M.

Xo = Xi=q @ity Xo + X1 = Y= Bjtj, Xo + X1 + X2 = X1 Vit @i, B, Vi € R

Weput 4;;x = a; + ([)’]- - ai)Pl + (yk - Bj)Pz; 1<ijk<n

Tyje =ti+ (G —t)Pr+ (e — )P 1< i jk <n

n
z Aijge Tijk

i,j,k=1
n
= Z[aiti + [ﬂ]t] - ﬂjti - aitj + aiti + ﬁjti - aiti + aitj - aiti]Pl
i=1
+ [aity — ait; + vieti — Biti — Yity + viti — Bty + Biti + Vit — vict; — Bty
+ —,Bjt] + ﬁ]tk - ﬁ]t] — aitk + aitj]Pz]
n n n n n
Z a;t; + Py Zﬁjfj - Z ati| + P, Z Yieti — Z Bjt;
i=1 j=1 i=1 k=1 j=1

= xo + P1[xo + x; — xo] + Po[xg + x1 + x, — (X + x1)] = X9 + X, P; + x,P,
=X

Thus T generates 2 — SPy,.

On the other hand, T is linearly independent, that is because:

If ¥ k=14ijx-X =0, then:

i1 ait; = 0,X% Bit; = 0, Xk_1 Ytk = 0, hencea; = B; =y, = 0 forall i,j,k, thus A; ;) =

0.

This implies that T is a basis of 2 — SPy,.

Example.

Find a basis of 2 —SP .

Solution.

First of all, we have {u; = (1,0),u, = (0,1)} is a basis of Z2.

Nader Mahmoud Taffach, Khadija Ben Othman, An Introduction to Symbolic 2-Plithogenic Modules Over Symbolic
2-Plithogenic Rings



41

The corresponding basis of 2 — SP,2 is:
T = {Ty, Ty, Ts, Ts, Ts, Te, T, Ts} such that:
T, =(1,0),T, =(01),Ts = uy + (uy —ug)Py + (up —ux)P, = (1,0) + (-1L1)P,
Ty =uy + (uz —uPy + (U —ux)P, = (1,0) + (=1L,1)P; + (1, -1)P,
Ts =u; + (uz —u)Pr + (ug —uP, = (0,1 + (1, -1
Te = up + (uz —u)Py + (uz —uy)P, = (0,1) + (1, -DP, + (-L1DP,
T7; =uy + (g —upPy + (U —uPp = (1,0) + (-1,1)P,
Tg = up + (uz —ux)Py + (ug —uzx)P, = (0,1) + (1, =P,
Remark.
dim (2 — SPy) = (dimM)3
Conclusion
In this paper we have defined the concept of symbolic 2-plithogenic modules over a
symbolic 2-plithogenic ring, where we have presented some of their elementary properties
such as basis, homomorphisms, and AH-submodules. On the other hand, we have
suggested many examples to clarify the validity of our work.
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