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Abstract. The present paper aims to deal with a new variant of uncertain classical transportation problem

namely ‘Interval Pentagonal Neutrosophic Transportation Problem’ (IPNTP) in which the uncertainty of source

& destination parameters are described by pentagonal neutrosophic numbers while an estimated range (interval

number) is used to represent uncertain cost of transportation. The objective consisting interval cost has been

splitted into two equivalent crisp objectives using the concept of expected value & uncertainty of interval

number. The constraints containing pentagonal neutrosophic quantities has also been converted into crisp

constraints with the help of score function. The pareto optimal solution of the transformed bi-objective crisp

transportation problem has been obtained using fuzzy programming approach. A numerical illustration is used

to demonstrate the computational procedure of the proposed variant. Lingo 18.0 software is used to solve the

problem.

Keywords: Fuzzy Set; Intuitionistic Set; Neutrosophic Set; Interval Numbers; Neutrosophic Transportation

Problem; Pentagonal Neutrosophic Number

—————————————————————————————————————————-

1. Introduction

In classical transportation problem, the cost-coefficients of transporting a unit product from

source i to destination j (cij), availability of the product at source i (ai) and demand of des-

tination j (bj) parameters are priorly known certain quantities. However in today’s uncertain

world it is not at all astonishing if these quantities reflect some uncertainty. So if we logi-

cally introduce some impreciseness in these quantities, we may get a new variant of classical

transportation problem. Usually the uncertainty in the problems can be dealt in three ways

(i) fuzzy (ii) interval and (iii) stochastic. Fuzzy sets were introduced by Zadeh [2] in 1965

which is characterized by a membership function. The membership function assigns a grade of
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membership to each element of set. This grade only gives an idea about the possibility of the

inclusion of respective element in the set but it does not reveal any information about non-

inclusion of an element in the set. Later on Atanassov [3] proposed an extension of fuzzy set in

which he also associated another grade of non-membership with each element in the fuzzy set.

Such sets are known as intuitionistic fuzzy sets. Further in the year 1999, Smarandache [4]

identified a situation of indeterminacy about inclusion of element in set. So he suggested the

association of another grade of indeterminacy along with the grades of inclusion and non-

inclusion. To overcome the limitation of intuitionistic fuzzy set, Smarandache [4] proposed the

concept of neutrosophic sets. Alike fuzzy number, the concept of triangular and trapezoidal

neutrosophic number and their deneutrosophication techniques have been developed by several

authors (see [5]- [8]). Wang et al. [9] introduced the idea of single valued neutrosophic sets.

In past few years, ample contribution of neutrosophic sets can be observed in multicriteria de-

cision making ( [10]- [22]), graph theory ( [23]- [29]), optimization techniques ( [30]- [33]) etc.

The concept of neutrosophic sets has been extensively applied by several authors by logically

introducing uncertainty in different ways in the parameters of classical transportation problem.

For example, Thamaraiselvi and Santhi [34] presented a new approach for solving a classical

transportation problem. They considered transportation problem in which the transportation

cost, availability of product and demand were represented by trapezoidal neutrosophic num-

bers. Singh et al. [35] suggested a modified version of Thamaraiselvi and Santhi [34]. The

uncertainty in cost, availability and demand parameters differently introduced by some au-

thors depending various possibilities has been summarized in Table 1. In 2019, Chakaraborty

et al. [46] discussed the advantages of using pentagonal neutrosophic numbers over triangular

and trapezoidal neutrosophic numbers.

This paper considers a transportation problem with pentagonal neutrosophic availability and

demand but interval cost of transportation. Since a membership grade to availability and

demand of product can be assigned easily but in case of transportation cost, it varies uncon-

trollably within a specific range due to many reasons like; maintenance of carrier, disloyalty

of drivers, fluctuation of fuel cost etc. To the best of our knowledge no such variant of the

transportation problem has been considered in literature. So it is quiet advocable to represent

the transportation cost in the form of interval numbers in a reasonable manner depending on

past experience. The concepts of score function [47], expected value and uncertainty [1] has

been applied to convert the developed uncertain transportation problem into an equivalent

crisp problem. To demonstrate the procedure of transportation of IPNTP to crisp problem

and its solution a numerical example is taken and solved using Lingo 18.0 software.
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Table 1. Summary

Refrences Interval Cost Neutrosophic Supply & Demand

Narayanamoorthy & Anukokila [36] 3 7

Pramanik & Dey [37] 7 3

Das et al. [38] 3 7

Saini & Sangal [39] 7 3

Paul et al. [40] 7 3

Kumar Das [41] 7 3

Habiba & Quddoos, [42] 3 7

Habiba & Quddoos, [43] 3 7

Chakraborty et al. [44] 7 3

Sikkannan & Shanmugavel [45] 7 3

Akilbasha et al. [46] 3 7

Proposed IPNTP 3 3

2. Preliminaries

Definition 2.1 (Fuzzy Set [2]). A Set F̃ over X represented as F̃={(x, µ(x)) : x ∈ X,µ(x) ∈
[0, 1]} is called a fuzzy set where X is the collection of points x and µ(x) is its truth membership

function.

Definition 2.2 (Intuitionistic Fuzzy Set [3]). A set Ĩ over X represented as

Ĩ={x;µ(x), δ(x);x ∈ X, where µ(x), δ(x) ∈ [0, 1]} is called an intuitionistic fuzzy set where

µ(x) and δ(x) are the truth and indeterminacy membership functions of x which satisfy the

following relation:

0 ≤ µ(x) + δ(x) ≤ 1

Definition 2.3 (Neutrosophic Set [4]). A set Ñ over X represented as

Ñ={x;µ(x), δ(x), σ(x);x ∈ X, and µ(x), δ(x), σ(x) ∈ [0, 1]} is called a neutrosophic sets where

µ(x), δ(x) and σ(x) are the truth, indeterminacy and falsity membership functions of x which

displays the following relation:

0 ≤ µ(x) + δ(x) + σ(x) ≤ 3

Definition 2.4 (Single-Valued Neutrosophic Set [9]). A Neutrosophic set Ñ in definition

2.3 is called as a single- valued neutrosophic set S̃N if x is a single-valued independent variable.

S̃N={x;µ(x), δ(x), σ(x);x ∈ X, } where µ(x), δ(x) and σ(x) are the truth, indeterminacy and

falsity membership functions of x respectively.

Definition 2.5 (Single-Valued Pentagonal Neutrosophic Number [47]). A Neu-

trosophic Number (S), S=〈[(s1, t1, u1, v1, w1);µ], [(s2, t2, u2, v2, w2); δ], [(s3, t3, u3, v3, w3);σ]〉,
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where µ, δ, σ ∈ [0, 1] is called single-valued pentagonal neutrosophic number, if its truth mem-

bership function (µ), indeterminacy membership function (δ) and the falsity membership func-

tion (σ) are respective given as follows:

µ(x) =



µl1(x) s1 ≤ x ≤ t1

µl2(x) t1 ≤ x ≤ u1

µ x = u1

µr2(x) u1 ≤ x ≤ v1

µr1(x) v1 ≤ x ≤ w1

0 otherwise

δ(x) =



δl1(x) s2 ≤ x ≤ t2

δl2(x) t2 ≤ x ≤ u2

δ x = u2

δr2(x) u2 ≤ x ≤ v2

δr1(x) v2 ≤ x ≤ w2

1 otherwise

σ(x) =



σl1(x) s3 ≤ x ≤ t3

σl2(x) t3 ≤ x ≤ u3

σ x = u3

σr2(x) u3 ≤ x ≤ v3

σr1(x) v3 ≤ x ≤ w3

1 otherwise

Definition 2.6 (Score Function [47]). Score function for any pentagonal single typed neu-

trosophic number (P1, P2, P3, P4, P5;µ, δ, σ) is defined as follows:

S̃ =
1

15
{(P1 + P2 + P3 + P4 + P5)× (2 + µ− δ − σ)}

where µ, δ and σ are the truth, indeterminacy and falsity membership functions.

Definition 2.7 (Interval Numbers [48]).

A = [aL, aR] = { a : aL ≤ a ≤ aR, a ∈ R},

where aL and aR are the left-limit and right-limit of the interval A on the real line R.

A =
〈
ac, aw

〉
= { a : ac − aw ≤ a ≤ ac + aw, a ∈ R},

where ac and aw are the mid-point and half-width (or simply be termed as ‘width’) of interval

A on the real line R, i.e.

ac =
aR + aL

2
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aw =
aR − aL

2

Definition 2.8 ( Ishibuchi and Tanaka’s ranking for intervals [1]). Let A =

[aL, aR]=
〈
ac, aw

〉
and B = [bL, bR]=

〈
bc, bw

〉
be two given intervals then the order relation

≤CW is defined as:

{
A ≤CW B iff ac ≤ bc, and aw ≤ bw
A <CW B iff A ≤CW B, and A 6= B

3. Mathematical Model of IPNTP

Consider a transportation problem in which the cost-coefficients are represented in the form

of interval number & source and destination parameters are represented as pentagonal single

typed neutrosophic numbers. The mathematical model of such IPNTP may be given as follows:

Problem-I:

Minimize : Z =
m∑
i=1

n∑
j=1

[cLij , cRij ]xij (1)

Subject to;

n∑
j=1

xij ≤ aiS , i = 1, 2, . . . ,m (2)

m∑
i=1

xij ≥ bjS , j = 1, 2, . . . , n (3)

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (4)

where,

[cLij , cRij ]: interval cost of transporting one unit of product from source i to destination j,

cLij : lowest possible cost of transporting one unit of product from source i to destination j,

cRij : highest possible cost of transporting one unit of product from source i to destination j

ai
S : pentagonal single typed neutrosophic availability of source i,

bj
S : pentagonal single typed neutrosophic demand of destination j,

xij : quantity transported from source i to destination j

4. Equivalent crisp model of IPNTP

4.1. Construction of crisp Objective Function

Let us consider the interval objective function Z of the Problem-I which can be denoted as

Z =
〈
zc, zw

〉
, where zc = ( cR+cL

2 ) and zw = ( cR−cL
2 ) are the center and width of the interval

Z respectively.

According to Ishibuchi and Tanaka [1] the center and width of an interval can be taken as
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the expected value and uncertainty of interval respectively. Since the objective function of

Problem-I is the cost function which is to be minimized, so our interest is to obtain minimum

cost with minimum uncertainty. Then the interval objective function (1) is transformed into

a two crisp functions in terms of expected value and uncertainty by definition (2.8) as follows:

Minimize zc =
m∑
i=1

n∑
j=1

ccijxij (5)

Minimize zw =
m∑
i=1

n∑
j=1

cwijxij (6)

where, cc = cR+cL
2 and cw = cR−cL

2 are the center and width of the interval respectively.

4.2. Construction of crisp Constraints

Let us consider the constraint (2) of Problem-I where the right hand side ai
S representing

the pentagonal single typed neutrosophic availability of product at source i. This pentagonal

single typed neutrosophic number ai
S can be represented by a crisp value using the score

function defined in definition (2.6). Thus corresponding crisp constraint may be written as

follows:
n∑

j=1

xij ≤ S̃(ai), i = 1, 2, . . . ,m (7)

Similarly, the crisp destination constraint can also be obtained as follows:

m∑
i=1

xij ≥ S̃(bj), j = 1, 2, . . . , n (8)

Using equations (5-6) and (7-8), we can write the equivalent bi-objective crisp problem of

IPNTP as follows:

Problem-II:

Minimize zc =

m∑
i=1

n∑
j=1

ccijxij (9)

Minimize zw =
m∑
i=1

n∑
j=1

cwijxij (10)

Subject to;

n∑
j=1

xij ≤ S̃(ai), i = 1, 2, . . . ,m (11)

m∑
i=1

xij ≥ S̃(bj), j = 1, 2, . . . , n (12)

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (13)
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5. Fuzzy Programming Technique for solving bi-objective transportation problem

(Problem-II)

First we find the best Lk and worst Uk for the kth, k = c, w objective function, where

Lk is the aspired level and Uk is the highest acceptable level for the kth objective function.

Thereafter we create a fuzzy linear programming problem using membership function. The

stepwise procedure of fuzzy programming technique is given as follows:

Step 1: Solve the bi-objective transportation problem (Problem-II) as a single objective prob-

lem using only one objective at a time and ignoring other.

Step 2: From each solution derived in Step1 determine the values of both objective functions.

Step 3: Find the best Lk and worst Uk for both objectives corresponding to the set of solutions.

Define a fuzzy membership function µk(Zk) as follows:

µk(Zk) =


1, if Zk ≤ Lk

1− Zk−Lk
Uk−Lk

, if Lk ≤ Zk ≤ Uk

0, if Zk ≥ Lk

The equivalent linear programming problem for the vector minimum problem can be

written as follows:

Maximize : λ,

Subject to; λ ≤ Uk − Zk

Uk − Lk

Constraints; (11− 13)

0 ≤ λ ≤ 1

The above linear programming problem may further be simplified as:

Problem-III:

Maximize : λ,

Subject to; Zk + λ(Uk − Lk) ≤ Uk

Constraints; (11− 13)

0 ≤ λ ≤ 1

Step 4: Solve Problem-III using any method and obtain the required pareto optimal solution.

6. Numerical Illustration

A company has three factories F1, F2 and F3. A homogenous product is to be transported

from these factories to four destinations D1, D2, D3 and D4 in such a way that the total

shipment cost becomes minimum. The availability at each factories and requirement at each
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destinations and unit interval cost transportation cost from each factory to each destination

are given in Table 2.

Table 2. Interval pentagonal neutrosophic transportation table

D1 D2 D3 D4 Availability

F1 [5,7] [5,9] [3,5] [7,8]
(22,26,28,32,35;

0.7,0.3,0.4)

F2 [8,12] [7,10] [4,8] [5,6]
(30,33,36,38,40;

0.6,0.4,0.5)

F3 [6,7] [1,2] [7,9] [5,6]
(21,28,32,37,39;

0.8,0.2,0.4)

Demand
(13,16,18,21,25;

0.5,0.5,0.6)

(17,21,24,28,30;

0.8,0.2,0.4)

(24,29,32,35,37;

0.9,0.5,0.3)

(6,10,13,15,18;

0.7,0.3,0.4)

The mathematical model of the given problem is as follows:

Minimize : Z =

3∑
i=1

4∑
j=1

[cLij , cRij ]xij

Subject to;

4∑
j=1

x1j ≤ (22, 26, 28, 32, 35; 0.7, 0.3, 0.4),

4∑
j=1

x2j ≤ (30, 33, 36, 38, 40; 0.6, 0.4, 0.5),

4∑
j=1

x3j ≤ (21, 28, 32, 37, 39; 0.8, 0.2, 0.4),

3∑
i=1

xi1 ≥ (13, 16, 18, 21, 25; 0.5, 0.5, 0.6),

3∑
i=1

xi2 ≥ (17, 21, 24, 28, 30; 0.8, 0.2, 0.4),

3∑
i=1

xi3 ≥ (24, 29, 32, 35, 37; 0.9, 0.5, 0.3),

3∑
i=1

xi4 ≥ (6, 10, 13, 15, 18; 0.7, 0.3, 0.4), xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4

Using Problem-II the above problem can be written as follows:

Minimize zc =
3∑

i=1

4∑
j=1

ccijxij , Minimize zw =

3∑
i=1

4∑
j=1

cwijxij

where,

ccij =

 6 7 4 7.5

10 8.5 6 5.5

6.5 1.5 8 5.5

 , cwij =

1 2 1 0.5

2 1.5 2 0.5

1 0.5 1 0.5


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Subject to;

4∑
j=1

x1j ≤ 19.06,
4∑

j=1

x2j ≤ 20.06,
4∑

j=1

x3j ≤ 23.01,
3∑

i=1

xi1 ≥ 8.68,

3∑
i=1

xi2 ≥ 17.6,
3∑

i=1

xi3 ≥ 21.96,
3∑

i=1

xi4 ≥ 9.32, xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4

On solving the above problem using lingo 18.0 software, the pareto optimal solution of the

problem is obtained as, x11 = 3.27, x13 = 15.79, x23 = 6.17, x24 = 9.32, x31 = 5.41, x32 = 17.6,

Z = [185.06, 280.19].

The above result shows that minimum total cost of transportation lies between 185.06 to

280.19. The optimal policy of transportation to be adopted by decision maker is given in

Table (3).

Table 3. Optimal policy of transportation

Factoy Destination Suggested optimal policy of transportation

F1 −→ D1 3.27 Units of product are to be transported from first factory

to first destination

F1 −→ D3 15.79 Units of product are to be transported from first factory

to third destination

F2 −→ D3 6.17 Units of product are to be transported from second fac-

tory to third destination

F2 −→ D4 9.32 Units of product are to be transported from second fac-

tory to fourth destination

F3 −→ D1 5.41 Units of product are to be transported from third factory

to first destination

F3 −→ D2 17.6 Units of product are to be transported from third factory

to second destination

7. Advantages and Limitations of IPNTP

Every new study carry some limitations along with the advantages. Two major advantages

and their corresponding limitations have been discussed in Table 4.

8. Conclusion and Future Work

In this paper, a more realistic variant of transportation problem namely IPNTP has been

introduced with interval cost and pentagonal neutrosophic availability and demand parameters.

Since the transportation cost greatly depends on many factors like sudden change in fuel prices,

load carrying capacity of carrier, disloyalty of drivers and many more. So it becomes tedious
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Table 4. Advantages and limitations

Advantages Limitations

• Use of interval cost reduces their tedious

task of assigning membership grade to

every associated cost

• Solution approaches work well for single

objective problem as it converts into a bi-

objective crisp problems

• Relatively more information needed to

reduce the range of interval

• Multiobjective problems increases the

computational complexity of the problem

because it doubles the number of objec-

tives while converting into crisp one

for decision maker to assign grades to truth, indeterminacy and falsity membership functions

for unit cost of transporting product from each source to every destination. To overcome this

issue this article suggest the decision maker to represent the transportation cost in the form

of interval number. But this issue is not valid in case of availability and demand because

membership grade for availability and demand parameters may easily be assigned with the

help of information received from sources and destinations. To the best of our knowledge no

such variant of transportation problem is considered in literature previously.

An extension of the IPNTP with interval valued neutrosophic cost may be proposed in future

research work.
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