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Abstract: The main objective of this article is to introduce the notion of minimal structure (in short 

M-structure) and grill in neutrosophic topological space (in short N-T-space). Besides, we establish 

its relation with some existing notions on different types of open sets in N-T-space, and investigate 

some basic properties of the class of M-structure and grill in NT-space. Further, we furnish some 

suitable examples of M-structure and grill via NT-space.  

Keywords: Neutrosophic Set; M-structure; Neutrosophic Topology; Neutrosophic Grill Topology. 

 

 

1. Introduction: The concept of fuzzy set (in short F-set) theory was grounded by Zadeh [29] in 1965. 

Uncertainty plays an important role in our everyday life problems. Zadeh [29] associated the 

membership value with the elements to control the uncertainty. It was not sufficient to control 

uncertainty, so Atanaosv [3] added non-membership value along with the membership value, and 

introduced the notion of intuitionistic fuzzy set (in short IF-set). Still it was difficult to handle some 

real world problems under uncertainty, in particular for problems on decision making. In order to 

overcome this difficulty, Smarandache [24] considered the elements with truth-membership, 

indeterminacy-membership and false-membership values, and grounded the idea of neutrosophic 

set (in short N-set) theory in 1998. Till now, the concept of N-set has been applied in many branches 

of science and technology. 

The notions of N-T-space was first grounded by Salama and Alblowi [22], followed by Salama 

and Alblowi [23], Iswaraya and Bageerathi [15], who studied the concept of neutrosophic semi-open 

set (in short NSO-set) and neutrosophic semi-closed set (in short NSC-set). Arokiarani et al. [2] 

studied some new notations and mappings via N-T-spaces. Iswarya and Bageerathi [15] established 
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the notion of neutrosophic semi-open sets via neutrosophic topological space. Afterwards, Rao and 

Srinivasa [21] introduced and studied neutrosophic pre-open set (in short NPO-set) and 

neutrosophic pre-closed set (in short NPC-set) via N-T-space. Das and Pramanik [7] grounded the 

notion of generalized neutrosophicx b-open set via neutrosophic topological space. Later on, Das 

and Pramanik [8] introduced the notion of neutrosophic 𝜙-open set and neutrosophic 𝜙-continuous 

function via neutrosophic topological space. Recently, Das and Tripathy [11] presented the notion of 

neutrosophic simply b-open set via neutrosophic topological space. Thereafter, Das and Tripathy 

[13] introduced the idea of pairwise neutrosophic b-open sets via N-T-space. Parimala et al. [19] 

introduced the notion of neutrosophic nano ideal topological space. Later on Parimala et al. [20] 

grounded the idea of neutrosophic 𝛼𝜓-homomorphism via neutrosophic topological spaces. 

Makai et al. [16] introduced and studied the concept of minimal structure (in short M-structure) 

via topological space. It is found to have useful applications and the notion was investigated by 

Madok [17]. The notion of minimal structure in a fuzzy topological space was introduce by 

Alimohammady and Roohi [1] and further investigated by Tripathy and Debnath [27] and others. 

In this article, we introduce the idea of minimal structure and grill via N-T-spaces. We establish 

its relation with some existing notions on several types of open sets via N-T-spaces. Besides, we 

investigate some basic properties of the class of minimal structures and grill via N-T-spaces. Further, 

we furnish some suitable examples on minimal structures and grill via N-T-spaces. 

The rest of the paper is divided into following sections: 

In section 2, we provide some definitions and results those are very useful for the preparation of 

the main results of this article. In section 3, we introduce the concept of M-structure and gril via 

NT-spaces, and proved some basic results on them. In section 4, we introduce an operator ( )* on 

M-structure via NT-spaces, and established several interesting results based on it. Finally, in section 

5, we conclude the work done in this article. 

 

2. Preliminaries & Definitions: 

In this section, we provide some existing results on neutrosophic set and neutrosophic topology 

those are relevant to main results of this article.    

Definition 2.1.[24] Suppose that Ĝ be a fixed set. Then W, an N-set over Ĝ is a set contains triplet 

having truth, indeterminacy and false membership values that can be characterized independently, 

denoted by TW, IW, FW in the unit interval [0, 1]. 

We denote the N-set W as follows: 

W = {(r, TW(r), IW(r), FW(r)): r Ĝ}, where TW(r), IW(r), FW(r) [0, 1], for all r Ĝ. 

Since, no restriction on the values of TW(r), IW(r) and FW(r) is imposed, so we have 

0  TW(r) + IW(r) + FW(r)  3, for all rĜ. 
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Example 2.1. Suppose that Ĝ={b, c} be a fixed set. Clearly, W={(b,0.4,0.8,0.7), (c,0.2,0.8,0.7)} is an N-set 

over Ĝ. 

 

Definition 2.2.[24] Suppose that W = {(r, TW(r), IW(r), FW(r)): rĜ} be an N-set over Ĝ. Then, Wc i.e., 

the complement of W is defined by Wc = {(r, 1-TW(r), 1-IW(r), 1-FW(r)): rĜ}. 

 

Example 2.2. Suppose that Ĝ={b, c} be a fixed set. Let W={(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)} be an N-set 

over Ĝ. Then, the complement of W is Wc={(b,0.5,0.5,0.3), (c,0.5,0.3,0.2)}. 

 

Definition 2.3.[24] An N-set W = {(r, TW(r), IW(r), FW(r)): rĜ} is called a subset of an N-set L = {(r, 

TL(r), IL(r), FL(r)): rĜ} (i.e., WL) if and only if TW(r)  TL(r), IW(r)  IL(r), FW(r)  FL(r), for each   rĜ. 

 

Example 2.3. Suppose that Ĝ={b, c} be a fixed set. Let M={(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)} and 

W={(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)} be two N-sets over Ĝ. Clearly, MW. 

 

Definition 2.4.[24] Assume that W = {(r, TW(r), IW(r), FW(r)): rĜ} and L={(r, TL(r), IL(r), FL(r)): rĜ}  be 

any two N-sets over a fixed set Ĝ. Then, their intersection and union are defined as follows: 

WL = {(r, TN(r)TL(r), IN(r)IL(r), FN(r)FL(r)): rĜ}, 

WL = {(r, TN(r)TL(r), IN(r)IL(r), FN(r)FL(r)): rĜ}. 

 

Example 2.4. Suppose that Ĝ={b, c} be a fixed set. Let W={(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)} and M= 

{(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)} be two N-sets over Ĝ. Then, WM={(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)} and 

WM={(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)}. 

 

Definition 2.5.[22] The null N-set (0N) and absolute N-set (1N) over Ĝ are represented as follows: 

(i) 0N ={(r, 0, 0, 1) : rĜ};  

(ii) 0N ={(r, 0, 1, 0) : rĜ};  

(iii) 0N ={(r, 0, 1, 1) : rĜ}; 

(iv) 0N ={(r, 0, 0, 0) : rĜ}; 

(v) 1N ={(r, 1, 0, 1) : rĜ}; 

(vi) 1N ={(r, 1, 1, 0) : rĜ}; 

(vii) 1N ={(r, 1, 0, 0) : rĜ}; 

(viii) 1N ={(r, 1, 1, 1) : rĜ}. 

Clearly, 0N 1N. We have, for any N-set W, 0N   W  1N. 

Throughout the article, we will use 0N ={(r, 0, 1, 1) : rĜ} and 1N ={(r, 1, 0, 0) : rĜ}. 
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Definition 2.6.[22] Assume that Ĝ be a fixed set. Then , a family of N-sets over Ĝ is called an N-T on 

Ĝ if the following condition holds: 

(i) 0N, 1N; 

(ii) W1, W2  W1W2; 

(iii) {Wi : i}  iWi. 

Then, the pair (Ĝ, ) is called an N-T-space. If W, then W is called an neutrosophic open set (in 

short N-O-set) in (Ĝ, ), and the complement of W is called an neutrosophic closed set (in short 

N-C-set) in (Ĝ, ). 

 

Example 2.5. Suppose that W, E and Z be three N-sets over a fixed set Ĝ={p, q} such that: 

W={(p,0.7,0.5,0.7), (q,0.5,0.1,0.5): p, qĜ}; 

E={(p,0.6,0.9,0.8), (q,0.5,0.3,0.8): p, qĜ}; 

Z={(p,0.5,1.0,0.8), (q,0.4,0.4,0.9): p, qĜ}. 

Then, the collection ={0N, 1N, W, E, Z} forms a neutrosophic topology on Ĝ. Here, 0N, 1N, W, E, Z are 

NOSs in (Ĝ, ), and their complements 1N, 0N, Wc={(p,0.3,0.5,0.3), (q,0.5,0.9,0.5): p, q Ĝ}, Ec={(p,0.4,0.1, 

0.2), (q,0.5,0.7,0.2): p, q Ĝ} and Z={(p,0.5,0.0,0.2), (q,0.6,0.6,0.1): p, q Ĝ} are NCSs in (Ĝ, ). 

 

The neutrosophic interior and neutrosophic closure of an N-set are defined as follows: 

Definition 2.7.[22] Assume that  be an N-T on Ĝ. Suppose that W be an N-set over Ĝ. Then,  

(i) neutrosophic interior (in short Nint) of W is the union of all N-O-sets in (Ĝ, ) those are contained in 

W, i.e., Nint(W) = {E : E is an N-O-set in Ĝ such that EW};  

(ii) neutrosophic closure (in short Ncl) of W is the intersection of all N-C-sets in (Ĝ, ) those containing 

W, i.e., Ncl(W) = {F : F is an N-C-set in Ĝ such that WF}. 

Clearly Nint(W) is the largest N-O-set contained in W, and Ncl(W) is the smallest N-C-set 

containing W. 

 

Example 2.6. Suppose that (Ĝ, ) be an NT-space as shown in Example 2.5. Suppose that 

U={(p,0.5,0.5,0.7), (q,0.5,0.7,0.8)} be an N-set over Ĝ. Then, Nint(U)=0N and Ncl(U)={(p,0.5,0.0,0.2), 

(q,0.6,0.6,0.1)}. 

 

Proposition 2.1.[22] For any N-set B in (Ĝ, ), we have the following: 

(i) Nint(Bc) = (Ncl(B))c; 

(ii) Ncl(Bc) = (Nint(B))c. 

 

Definition 2.2.[21] Suppose that (Ĝ, ) be an N-T-space, and W be an N-set over Ĝ. Then, W is called 

(i) NSO-set if and only if W  Ncl(Nint(W)); 
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(ii) NPO-set if and only if W  Nint(Ncl(W)). 

The collection of all NSO sets and NPO sets in (Ĝ, 𝜏) are denoted by NSO(𝜏) and NPO(𝜏). 

 

Example 2.7. Suppose that Ĝ={a, b} be a fixed set. Clearly, (Ĝ, ) is an NT-space, where ={0N, 1N, {(a, 

0.3,0.3,0.4), (b,0.4,0.4,0.3): a, bĜ}, {(a,0.4,0.1,0.4), (b,0.5,0.3,0.1): a, bĜ}}. Then, the N-set Q={(a,0.6, 

0.1,0.4), (b,0.9,0.2,0.1): a, bĜ} is an NSO set, and P={(a,0.3,0.2,0.9), (b,0.3,0.3,0.4): a, bĜ} is an NPO 

set in (Ĝ, ). 

 

Definition 2.8.[2] Assume that (Ĝ, ) be an N-T-space. Then W, an N-set over Ĝ is called an 

neutrosophic b-open set (in short N-b-O-set) in (Ĝ, ) if and only if W  Nint(Ncl(W))Ncl(Nint(W)).  

An N-set G is called an neutrosophic b-closed set (in short N-b-C-set) in (Ĝ, ) if and only if its 

complement is an N-b-O-set in (Ĝ, ). The collection of all neutrosophic b-open sets in (Ĝ, 𝜏) is 

denoted by N-b-O(𝜏). 

 

Example 2.8. Suppose that (Ĝ, ) be an NT-space as shown in Example 2.7. Then, the neutrosophic 

set P={(a,0.3,0.2,0.9), (b,0.3,0.3,0.4): a, bĜ} is an neutrosophic b-open set in (Ĝ, ). 

 

3. Minimal Structure in Neutrosophic Topological Space 

In this section, we procure the notions of M-structure and grill in N-T-space. 

Definition 3.1. A family M of neutrosophic subsets of Ĝ i.e., M  P(Ĝ), where P(Ĝ) is the collection of 

all N-sets defined over Ĝ is said to be a M-structure on Ĝ if 0N and 1N belong to M. By (Ĝ, M), we 

denote the neutrosophic minimal space (in short N-M-space). The members of M are called 

neutrosophic minimal-open (in short N-m-O) subset of Ĝ. 

 

Example 3.1. Let W, E and Z be three neutrosophic sets over a fixed set Ĝ={b, c} such that: 

W={(b,0.7,0.5,0.7), (c,0.5,0.1,0.5): b, cĜ}; 

E={(b,0.6,0.9,0.8), (c,0.5,0.3,0.8): b, cĜ}; 

Z={(b,0.5,1.0,0.8), (c,0.4,0.4,0.9): b, cĜ}. 

Clearly, the collection M={0N, 1N, W, E, Z} forms a neutrosophic minimal structure on Ĝ, and the pair 

(Ĝ, M) is a neutrosophic minimal structure space.  

 

Definition 3.2. The complement of N-m-O set W is an neutrosophic m-closed set (in short N-m-C 

set) in (Ĝ, M). 

 

Example 3.2. Let us consider a neutrosophic minimal structure space as shown in Example 3.1. Here, 

0N, 1N, W, E, Z are neutrosophic minimal open sets in (Ĝ, M), and (0N)c = 1N, (1N)c = 0N, Wc = 
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{(b,0.3,0.5,0.3), (c,0.5,0.9,0.5)}, Ec ={(b,0.4,0.1,0.2), (c, 0.5,0.7,0.2)}, Zc = {(b,0.5,0.0,0.2), (c,0.6,0.6,0.1)} are 

neutrosophic minimal closed sets in (Ĝ, M). 

 

Example 3.3. From the above definitions, it is clear that NPO-sets, NSO-sets, N-α-O-sets, N-b-O-sets 

are N-m-O sets. 

 

Example 3.4. Let W, E and Z be three neutrosophic sets over a non-empty set Ĝ ={b, c} such that: 

W={(b,0.7,0.5,0.7), (c,0.5,0.5,0.1) : b, cX}; 

E={(b,0.6,0.8,0.9), (c,0.5,0.8,0.3) : b, cX}; 

Z={(b,0.5,0.8,1.0), (c,0.4,0.9,0.4) : b, cX}. 

Here, the family 𝜏={0N, 1N, W, E, Z} forms a neutrosophic topology on X, and so (Ĝ, 𝜏) is a 

neutrosophic topological space. Suppose M = 𝜏 ∪NPO(𝜏)∪NSO(𝜏)∪N-b-O(𝜏), then (Ĝ, M) is a 

neutrosophic minimal structure. Now, from the above it is clear that, every neutrosophic pre-open 

sets, neutrosophic semi-open sets, neutrosophic b-open sets in (Ĝ, 𝜏) are neutrosophic m-open sets in 

(Ĝ, M). Further, it is also seen that, every neutrosophic m-open set in (Ĝ, M) is also a neutrosophic 

pre-open set, neutrosophic semi-open set, neutrosophic b-open set in (Ĝ, 𝜏). 

 

Remark 3.1. We can define neutrosophic minimal interior (in short Nmint), neutrosophic minimal 

closure (in short Nmcl) etc. in an N-M-space as we have define in the previous section. 

 

Example 3.5. Suppose that (Ĝ, M) be a neutrosophic minimal structure space as shown in Example 

3.1. Then, the neutrosophic minimal interior of D={(b,0.2,0.6,0.4), (c,0.4,0.9,0.7)} is Nm-int(D)={(b,0,1,1), 

(c,0,1,1)}, and the neutrosophic minimal closure of D={(b,0.2,0.6,0.4), (c,0.4,0.9,0.7)} is Nm-cl(D)={(b,0.3, 

0.5,0.3), (c,0.5,0.9,0.5)} respectively. 

    

In view of the definitions given in this article, we state the following result without proof. 

Theorem 3.1. Suppose that (Ĝ, M) be an N-M-space. Then, for any N-sets S and R over Ĝ, the 

following holds: 

(i) (Nmcl(S))c= Nmcl(Sc) and (Nmint(S))c= Nmcl(Sc). 

(ii) Nmcl(S)=S if and only if S is an N-m-C set in (Ĝ, M). 

(iii) Nmint(S)=S if and only if S is an N-m-O set in (Ĝ, M). 

(iv) SR  Nmcl(S)Nmcl(R) and Nmint(S)Nmint(R). 

(v) SNmcl(S) and Nmint(S)S. 

(vi) Nmcl(Nmcl(S))=Nmcl(S) and Nmint(Nmint(S))=Nmint(S). 
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Theorem 3.2. Assume that (Ĝ, M) be an N-M-space. Suppose that M satisfies the property B. Then, 

for an neutrosophic subset S of Ĝ, the followings hold: 

(i) S M if and only if Nmint(S)=A. 

(ii) S is N-m-C set if and only if Nmcl(S)=S.  

(iii) Nmint(S) M and Nmcl(S) is an N-m-C set. 

 

Definition 3.3. An N-M-structure M on a non-empty set Ĝ is said to be have property B if the union 

of only family of neutrosophic subsets belonging M belongs to M. 

 

Example 3.6. Suppose that R, E and Y be three neutrosophic sets over a fixed set Ĝ={b, c} such that: 

R={(b,0.8,0.5,0.8), (c,0.6,0.1,0.6): b, cĜ}; 

E={(b,0.7,0.9,0.9), (c,0.6,0.3,0.9): b, cĜ}; 

Y={(b,0.6,1.0,0.9), (c,0.5,0.4,1.0): b, cĜ}. 

Here, the collection M={0N, 1N, R, E, Y} forms a N-M-structure on Ĝ, and so the pair (Ĝ, M) is a 

neutrosophic minimal structure space. Clearly, the N-M-structure on Ĝ satisfied the property B 

which was stated in Definition 3.3. 

 

Definition 3.4. An N-M-structure (Ĝ, M) satisfies the property J if the finite intersection of N-m-O 

sets is an N-m-O set.  

 

Example 3.7. Let us consider a N-M-structure M on Ĝ as shown in Example 3.6. Clearly, the 

N-M-structure M on Ĝ satisfied the property j which was stated in Definition 3.4. 

 

Remark 3.2. If a N-M-structure M on Ĝ is a neutrosophic topology on Ĝ, then M satisfied the 

property j which was stated in Definition 3.4. 

    

Definition 3.5. A family G (0NG) of N-sets over Ĝ is called a grill on Ĝ if G satisfies the following 

condition: 

(i) SG and SR  RG; 

(ii) S, R  Ĝ and SRG SG or RG. 

 

Example 3.8. Suppose that Ĝ = {b, c} be a fixed set. Then, the collection M={1N, {(b,0.9,0.0,0.0), 

(c,0.9,0.0,0.0)}, {(b,0.8,0.0,0.0), (c,0.8,0.0,0.0)}} forms a grill on Ĝ. 

 

Remark 3.3. Since 0NG, so G is not a N-M-structure on Ĝ. An N-M-structure with a grill is called as 

a neutrosophic grill minimal space (in short N-G-M-space), denoted by (Ĝ, M, G). 
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4. ( )*-Operator on Neutrosophic Minimal Structure: 

Definition 4.1. Suppose that (Ĝ, M, G) be an N-G-M-space. A function ( )*m: P(Ĝ) → P(Ĝ) called as 

neutrosophic minimal local function (N-M-L-function) is defined by  

( )*m ={xĜ: SUM, for all UM(x)}. 

Now we discuss about some properties of the neutrosophic minimal local function ()*m in (Ĝ, M, G). 

 

Definition 4.2. Assume that (Ĝ, M, G) be a N-G-M-space. Then, the boundary of a N-set S over Ĝ is 

defined by (S)*m = (S)*m  (Sc)*m. 

 

We state the following two results without prove in view of the above definitions. 

Proposition 4.1. Suppose that (Ĝ, M, G) be a N-G-M-space. Then, the following holds: 

(i) (0N)*m = 0N; 

(ii) (S)*m = 0N, if SG; 

(iii) (S)*mP  (S)*mQ, where P and Q are neutrosophic grill on Ĝ with PQ. 

 

Proposition 4.2. Suppose that P(Ĝ) be the collection of all neutrosophic sets defined over Ĝ. Assume 

that (Ĝ, M, G) be a N-G-M-space. Then, for SP(Ĝ), 

(i) (S)*m = S(S)*m; 

(ii) (S)*m = nFn, where {Fn}n is the collection of all ( )*m-closed sets in (Ĝ, M, G). 

 

Theorem 4.1. Assume that (Ĝ, M, G) be a N-G-M-space. Then, the following holds: 

(i) S, R P(Ĝ) and SR  (S)*m  (R)*m; 

(ii) For SĜ, Nmcl(S)* m  (S)* m; 

(iii) For SĜ, (S)* m is a N-m-C set; 

(iv) For SĜ, (S)* m  Nmcl(S); 

(v) For SĜ, [(S)*m] *m  (S)* m. 

Proof. (i) Assume that SR and x(S)*m. Then, for all UM, we have by definition, that USG. 

Thus by definition of neutrosophic grill we have URG. Hence, x(R)*m. Therefore, (S)*m  (R)*m. 

(ii) Assume that xNmcl(S), for some SĜ. Then by a known result there exists an UxM such that 

UxS = 0N G. Therefore, x(S)*m. Hence, we have (S)*m  Nmcl(S). 

(iii) Assume that xNmcl(S)*m and UM(x), then U(S)*m ≠ 0N. Next, let y U(S)*m. Then, we have 

yU and y(S)*m. Therefore, USG, which implies x(S)*m. 

Thus, we have Nmcl(S)*m  (S)*m. 

(iv) Suppose that SP(Ĝ). Then, we have (S)*m  Nmcl(S)*m and Nmcl(S)*m = (S)*m. Thus, we have for 

any (S)*m = Nmcl(S)*m, since Nmcl(S)*m is an N-m-C set, so (S)*m is an N-m-C set. 
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(v) Suppose that SP(Ĝ). Then from (iv) we have Nmcl(S)*m  (S)*m. Further on considering (S)*m is 

place of S, from (vi) we have ((S)*m)*m  Nmcl(S)*m. Hence, from these two inclusion we have 

((S)*m)*m  (S)*m. 

 

Theorem 4.2. Assume that (Ĝ, M, G) be a N-G-M-space. Suppose that (Ĝ, M) satisfies the property J. 

Then, the following holds: 

(i) (SR)*m = (S)*m  (R)*m, for S, R  M; 

(ii) (SR)*m  (S)*m  (R)*m, for S, R  M. 

Proof. (i) We have S  SR, R  SR. Thus, we have (S)*m  (SR)*m and (R)*m  (SR)*m. This 

implies, (S)*m  (R)*m  (SR)*m                                                         (1)  

Suppose that x (S)*m(R)*m. Therefore there exists U1, U2  M(x) such that U1SG, U2RG. This 

implies, (U1S)  (U2R)G.  

Now, U1, U2  M(x) ⇒ U1U2 M(x) and (SR)  (U1U2)  (U1S)  (U2R)G. 

Therefore, x(SR)*m. Thus, we have (SR)*m  (S)*m  (R)*m                               (2) 

From (1) and (2) we have, (SR)*m = (S)*m  (R)*m. 

(ii) We have SR  S and SR  R. This implies, (SR)*m  (S)*m and (SR)*m  (R)*m. Therefore, 

(SR)*m  (S)*m  (R)*m. 

 

Theorem 4.3. Suppose that (Ĝ, M, G) be a N-G-M-space. Assume that (Ĝ, M) satisfies the property J. 

Then, the following holds: 

(i) For WM and SĜ, W(S)*m = W(WS)*m; 

(ii) For S, R  Ĝ, [(S)*m \(R) *m] = [(S\R)*m \(R)*m]; 

(iii) For S, R  Ĝ, with RG. (SR)*m = (S)*m = (S\R)*m.        

Proof. (i) It is known that (WS)  S. 

Now, (WS)  S 

⇒ (WS)*m  (S)*m 

⇒ W(W(S))*m  W(S))*m                                                            (3) 

Assume that xW(S)*m and VM(x).  

Then, we have WVM(x) and x(S)*m implies (WV)  SG.  

Thus, (WS)  VG. Thus, we have x(WS)*m, which implies xW(WS)*m. 

Hence, (WS)*m  W(WS)*m                                                                                                         (4) 

From (3) and (4), we have W(S)*m = W(WS)*m. 

(ii) We have,  

(S)*m =[(S\R)  (SR)]*m  

         = (S\R)*m  (SR)*m     [by part (i)] 

         [(S\R)*m  (R)*m].  
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Thus, we have [(S)*m\(R)*m]  [(S\R)*m  (R)*m]. 

We have, S\R  S ⇒ (S\R)*m  (S)*m.  This implies, [(S\R)*m\(R)*m]  [(S)*m\(R)*m]. 

Hence, we have  [(S)*m\(R) *m] = [(S\R)*m\(R)*m]. 

(iii) By Theorem 4.4 (i), we have for S, R Ĝ, (SR)*m = (S)*m  (R)*m.  

Further the earlier result we have RG implies (R)*m = 0N, so (S)*m  (R)*m = (S)*m.. 

We have, S\R  S ⇒ (S\R)*m  (S)*m., by part (iii) we have, 

 [(S)*m \(R)*m]  (S\R)*m, since (R)*m = 0N implies (S) *m. (S\R)*m.  

Thus, we have (S)*m =(S\R)*m. 

 

Definition 4.3. Suppose that (Ĝ, M, G) be an N-G-M-space. Then, the mapping NclmG: P(Ĝ)P(Ĝ) is 

define by NclmG(S) = S(S)*m., for all S∈P(Ĝ). 

 

Theorem 4.4. The mapping NclmG: P(Ĝ)P(Ĝ) satisfies the Kuratowski closure axioms. 

Proof. We have, NclmG(0N) = 0N  (0N)*m = 0N  0N = 0N. By the definition of NclmG, we have for all 

S∈P(Ĝ), NclmG(S) = S  (S)*m ⊇ S. 

Further, we have 

NclmG(SR) = (SR)  (SR)*m  

                   = ((SR)  ((S)*m  (R)*m)                               [by Theorem 4.3] 

                   = (S(S)*m)  (R(R)*m) = NclmG(S)  NclmG(R). 

Suppose that S∈P(Ĝ). Then, we have  

NclmG(NclmG(S)) = NclmG(S(S)*m)  

                        = [(S(S)*m)]  [(S(S)*m]*m 

                          = [(S(S)*m)]  [(S) *m  ((S)*m)*m.]                 [by Theorem 4.3] 

                        = S(S)*m 

Hence, the mapping NclmG satisfies the Kuratowski closure axioms. 

 

5. Conclusions: In this article, we have introduced the notion of minimal structure and grill via 

N-T-spaces. Besides, we have established its relation with some existing notions on several types of 

open sets via N-T-spaces, and investigated some basic properties of the class of minimal structures 

and grill via N-T-spaces. Further, we have furnished some suitable examples on minimal structures 

and grill via N-T-spaces. In the future, it is hoped that the notion of minimal structures and grill on 

N-T-spaces can also be applied in neutrosophic supra topological space [5], quadripartitioned 

neutrosophic topological space [6], pentapartitioned neutrosophic topological space [12], 

neutrosophic bitopological space [18], neutrosophic tri-topological space [10], neutrosophic soft 

topological space [9], neutrosophic multiset topological space [14], multiset mixed topological space 

[4], etc.      
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