Neutrosophic Sets and Systems

Volume 51

Article 8

10-5-2022

Irresolute and its Contra Functions in Generalized Neutrosophic Topological Spaces

Santhi P

Yuvarani A

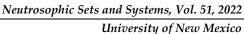
Vijaya S

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

P, Santhi; Yuvarani A; and Vijaya S. "Irresolute and its Contra Functions in Generalized Neutrosophic Topological Spaces." *Neutrosophic Sets and Systems* 51, 1 (2022). https://digitalrepository.unm.edu/ nss_journal/vol51/iss1/8

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact disc@unm.edu.



Irresolute and its Contra Functions in Generalized Neutrosophic Topological Spaces

Santhi P¹, Yuvarani A² and Vijaya S^{3*}

¹ PG & Research Department of Mathematics, The Standard Fireworks Rajaratnam College for Women, Madurai Kamaraj University, Sivakasi, Tamil Nadu, India, saayphd.11@gmail.com

² PG & Research Department of Mathematics, The American College, Madurai Kamaraj University, Madurai, Tamil Nadu, India, yuvamaths2003@gmail.com

³PG & Research Department of Mathematics, Thiagarajar College, Madurai Kamaraj University, Madurai, Tamil Nadu, India,

viviphd.11@gmail.com

* Correspondence: viviphd.11@gmail.com

Abstract: The intention to study the idea of Generalized Topological Spaces by means of Neutrosophic sets leads to develop this article. In this write up we launch new ideas on λ_N -Topological Spaces. We study some of its characteristics and behaviours of λ_N - α -irresolute function, λ_N -semi-irresolute function and λ_N -pre-irresolute function. Also we discuss the above for contra λ_N -irresolute functions and derived some relations between them.

2010 Mathematics Subject Classification: 54A05, 54B05, 54D10

Keywords: λ_N - α -irresolute function, λ_N -semi-irresolute function, λ_N -pre-irresolute function, contra λ_N - α -irresolute function, contra λ_N -semi-irresolute function, contra λ_N -pre-irresolute function.

1. Introduction

Zadeh [16] initiated fuzzy set theory in 1965 that deals with uncertainty in real life situations. Chang [2] designed fuzzy topology that gave a special note to the field of topology in 1968. Attanassov [1] in 1983, see the sights of intuitionistic fuzzy sets by considering both membership and non-membership of the elements. In 1997, Coker [4] worked on Intuitionistic fuzzy sets by extending the concepts of fuzziness and found a place for Intuitionistic fuzzy topological space.

Smarandache [5] to [7] & [14] introduced Neutrosophic set which is a generalization of fuzzy set and intuitionistic fuzzy set. This is a strong tool to discuss about the existence of incomplete, indeterminate and inconsistent information in the real life situation. Smarandache focused his observations en route for the degree of indeterminacy that directed into Neutrosophic Sets (NS). Soon after, Salama and Albowi [10] familiarized Neutrosophic Topological Spaces (NTS). Further, Salama, Smarandache and Valeri Kromov

[11] presented the continuous (Cts) functions in NTS. In [3], irresolute functions was introduced and analysed by Crossley and Hildebrand in Topological Spaces. Further, Vijaya [13] and Santhi [12] investigated the properties of λ - α -irresolute function and contra λ - α -irresolute function in Generalized Topological Spaces. In addition to that, properties of α -irresolute function and contra α -irresolute function in Nano Topological Spaces was look over by Yuvarani and et. al., [15]. By keeping all these works as a motivation, in 2020, Raksha Ben, Hari Siva Annam [8] & [9] contrived λ _N-Topological Space and deliberated its properties.

In this disquisition, we explore our perception of λ_N - α -irresolute function, λ_N -semi-irresolute function, λ_N -pre-irresolute function, contra λ_N - α -irresolute function, contra λ_N -semi-irresolute function, contra λ_N -pre-irresolute function and we have scrutinized about some of their basic properties. At every place the novel notions have been validated with apposite paradigms.

2. Prerequisites

2.1. Definition [10]

Let Ω be a non-empty fixed set. A NS, $E = \{ \langle \omega, M_E(\omega), I_E(\omega), N_E(\omega) \rangle : \omega \in \Omega \}$ where $M_E(\omega)$, I_E (ω) and N_E (ω) represents the degree of membership, indeterminacy and non-membership functions respectively of every element $\omega \in \Omega$.

2.2. Remark [10]

A NS, E can be recognized as a structured triple E = { $\langle \omega, M_E(\omega), I_E(\omega), N_E(\omega) \rangle$: $\omega \in \Omega$ } in

] -0, 1 +[on Ω.

2.3. Remark [10]

The NS, 0_N and 1_N in Ω is defined as

- (P₁) $0_{N} = \{ \langle \omega, 0, 0, 1 \rangle : \omega \in \Omega \}$
- $(\mathbf{P}_2) \quad \mathbf{0}_{\mathsf{N}} = \{ \langle \omega, 0, 1, 1 \rangle : \omega \in \Omega \}$
- (P₃) $0_N = \{ \langle \omega, 0, 1, 0 \rangle : \omega \in \Omega \}$
- $(\mathbf{P}_4) \quad \mathbf{0}_{\mathsf{N}} = \{ \langle \omega, 0, 0, 0 \rangle : \omega \in \Omega \}$
- (P₅) $1_{N} = \{ \langle \omega, 1, 0, 0 \rangle : \omega \in \Omega \}$
- (P₆) $1_{N} = \{ \langle \omega, 1, 0, 1 \rangle : \omega \in \Omega \}$
- (P₇) $1_{N} = \{ \langle \omega, 1, 1, 0 \rangle : \omega \in \Omega \}$
- (P₈) $1_{N} = \{ \langle \omega, 1, 1, 1 \rangle : \omega \in \Omega \}$

2.4. Definition [10]

If $E = \{ \langle M_E(\omega), I_E(\omega), N_E(\omega) \rangle \}$, then the complement of E on Ω is

- (P9) $E' = \{ \langle \omega, 1 M_E(\omega), 1 I_E(\omega) \text{ and } 1 N_E(\omega) \rangle : \omega \in \Omega \}$
- (P₁₀) $E' = \{ \langle \omega, N_E(\omega), I_E(\omega) \text{ and } M_E(\omega) \rangle : \omega \in \Omega \}$
- (P11) $E' = \{ \langle \omega, N_E(\omega), 1 I_E(\omega) \text{ and } M_E(\omega) \rangle : \omega \in \Omega \}$

124

2.5. Definition [10]

Let Ω be a non-empty set and let $E = \{ \langle \omega, M_E(\omega), I_E(\omega), N_E(\omega) \rangle : \omega \in \Omega \}$ and $F = \{ \langle \omega, M_F(\omega), I_F(\omega), N_F(\omega) \rangle : \omega \in \Omega \}$. Then

- (i) $E \subseteq F \Rightarrow M_{E}(\omega) \le M_{F}(\omega), I_{E}(\omega) \le I_{F}(\omega), N_{E}(\omega) \ge N_{F}(\omega), \forall \omega \in \Omega$
- (ii) $E \subseteq F \Rightarrow M_{E}(\omega) \le M_{F}(\omega), I_{E}(\omega) \ge I_{F}(\omega), N_{E}(\omega) \ge N_{F}(\omega), \forall \omega \in \Omega$

2.6. Definition [10]

Let Ω be a non-empty set and $E = \{ \langle \omega, M_E(\omega), I_E(\omega), N_E(\omega) \rangle : \omega \in \Omega \}$, $F = \{ \langle \omega, M_F(\omega), I_F(\omega), N_F(\omega) \rangle : \omega \in \Omega \}$ are NSs. Then,

- $(P_{12}) \quad E \cap F = \left\langle \omega, M_{E}(\omega) \land M_{F}(\omega), I_{E}(\omega) \lor I_{F}(\omega), N_{E}(\omega) \lor N_{F}(\omega) \right\rangle$
- $(P_{13}) \quad E \cap F = \left\langle \omega, M_{E}(\omega) \land M_{F}(\omega), I_{E}(\omega) \land I_{F}(\omega), N_{E}(\omega) \lor N_{F}(\omega) \right\rangle$
- $(P_{14}) \quad E \cup F = \left\langle \omega, M_{E}(\omega) \lor M_{F}(\omega), I_{E}(\omega) \land I_{F}(\omega), N_{E}(\omega) \land N_{F}(\omega) \right\rangle$
- (P15) $E \cup F = \langle \omega, M_E(\omega) \lor M_F(\omega), I_E(\omega) \lor I_F(\omega), N_E(\omega) \land N_F(\omega) \rangle$

2.7. Definition [9]

Let $\Omega \neq \phi$. A family of Neutrosophic subsets of Ω is λN -topology if it satisfies

 $(\Delta_1) \quad 0_N \in \lambda_N \qquad (\Delta_2) \quad E_1 \cup E_2 \in \lambda_N \text{ for any } E_1, E_2 \in \lambda_N.$

2.8. Remark [9]

Members of λ_N -topology are λ_N -Open Sets (λ_N -OS) and their complements are λ_N -Closed Sets (λ_N -CS).

2.9. Definition [9]

Let (Ω, λ_N) be a λ_N -TS and E = { $\langle \omega, M_E(\omega), I_E(\omega), N_E(\omega) \rangle$ } be a NS in Ω . Then

 λ_{N} -Closure (E) = $\bigcap \{F: E \subseteq F, F \text{ is } \lambda_{N}$ -CS}

 λ_{N} -Interior (E) = $\bigcup \{G: G \subseteq E, G \text{ is } \lambda_{N}$ -OS}

2.10. Definition [8]

A NS, E in λ_N -TS is said to be

(i) λ_N -Semi-Open Set (λ_N -SOS) if $E \subseteq \lambda_N$ -Cl(λ_N -Int(E)),

- (ii) λ N-Pre-Open Set (λ N-POS) if $E \subseteq \lambda$ N-Int(λ N-Cl(E)),
- (iii) $\lambda_N \alpha$ -Open Set ($\lambda_N \alpha OS$) if $E \subseteq \lambda_N$ -Int(λ_N -Cl(λ_N -Int(E))).

2.11. Lemma [8]

Every λN - αOS is λN -SOS and λN -POS.

2.12. Definition [8]

Let the function h: $(\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ is defined to be λ_N -Cts (resp. λ_N -SCts, λ_N -PCts, λ_N - α Cts) if the inverse image of λ_N -CS in (Ω_2, τ_2) is a λ_N -CS (resp. λ_N -SCS, λ_N -PCS, λ_N - α CS) in (Ω_1, τ_1) .

3. λ_N -Irresolute Functions

3.1. Definition

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. Then h: $\Omega_1 \rightarrow \Omega_2$ is said to be a λ_N - α -irresolute function (resp. λ_N -semi-irresolute, λ_N -pre-irresolute) if the inverse image of every λ_N - α OS (resp. λ_N -SOS, λ_N -POS) in (Ω_2, τ_2) is an λ_N - α OS (resp. λ_N -SOS, λ_N -POS) in (Ω_1, τ_1) .

3.2. Example

Let h: $(\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ be defined as h(p) = s and h(q) = r, where $\Omega_1 = \{p, q\}$ and $\Omega_2 = \{r, s\}$, $\tau_1 = \{0_N, A, B\}, \tau_2 = \{0_N, C, D\}.$

(i) $A = \langle (0.2, 0.8, 0.9), (0.1, 0.7, 0.8) \rangle$, $B = \langle (0.3, 0.5, 0.6), (0.4, 0.6, 0.7) \rangle$, $C = \langle (0.1, 0.7, 0.8), (0.2, 0.8, 0.9) \rangle$, $D = \langle (0.4, 0.6, 0.7), (0.3, 0.5, 0.6) \rangle$, $G = \langle (0.3, 0.7, 0.8), (0.2, 0.6, 0.7) \rangle$, $H = \langle (0.2, 0.6, 0.7), (0.3, 0.7, 0.8) \rangle$.

Here {0_N, A, B, G} and {0_N, C, D, H} are λ_N - α OS of (Ω_1 , τ_1) and (Ω_2 , τ_2) respectively. Hence, h is a λ_N - α -irresolute function.

(ii)	A = $\langle (0.3, 0.7, 0.8), (0.2, 0.6, 0.8) \rangle$,	$B = \left< (0.4, 0.6, 0.7), (0.5, 0.5, 0.6) \right>,$
	C = $\langle (0.5, 0.5, 0.6), (0.4, 0.6, 0.7) \rangle$,	$D = \left< \left(0.2, 0.6, 0.8 \right), \left(0.3, 0.7, 0.8 \right) \right>,$
	G = $\langle (0.3, 0.7, 0.8), (0.4, 0.5, 0.7) \rangle$,	H = $\langle (0.4, 0.5, 0.7), (0.3, 0.7, 0.8) \rangle$.

Here {0_N, A, B, G} and {0_N, C, D, H} are λ_N -SOS of (Ω_1 , τ_1) and (Ω_2 , τ_2) respectively. Therefore, h is a λ_N -semi-irresolute function.

Here {0_N, A, B, G, H} and {0_N, C, D, I, J} are λ_N -POS of (Ω_1 , τ_1) and (Ω_2 , τ_2) respectively and so h is a λ_N -pre-irresolute function.

3.3. Theorem

Let (Ω, τ) be a λN -TS and E $\subseteq \Omega$. Then E is λN - αOS iff it is λN -SOS and λN -POS.

Proof:

If E is $\lambda_{N-\alpha}OS$, then by Lemma 2.11, E is λ_{N} -SOS and λ_{N} -POS. Conversely if E is λ_{N} -SOS and λ_{N} -POS, then E $\subseteq \lambda_{N}$ -Cl(λ_{N} -Int(E)) and E $\subseteq \lambda_{N}$ -Int(λ_{N} -Cl(E)). Therefore λ_{N} -Int(λ_{N} -Cl(E)) $\subseteq \lambda_{N}$ -Int(λ_{N} -Cl(λ_{N} -Cl(λ_{N} -Int(E)))) = λ_{N} -Int(λ_{N} -Cl(λ_{N} -Int(λ_{N} -Cl(λ_{N} -Int(λ_{N} -Cl(E))) $\subseteq \lambda_{N}$ -Int(λ_{N} -Cl(λ_{N} -Int(E))). Also E $\subseteq \lambda_{N}$ -Int(λ_{N} -Cl(E)) $\subseteq \lambda_{N}$ -Int(λ_{N} -Cl(λ_{N} -Int(E))). Thus E is λ_{N} - α OS.

3.4. Theorem

Let h: $\Omega_1 \rightarrow \Omega_2$ be a function, where (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. Then the succeeding are equivalent.

- (i) h is $\lambda N \alpha$ -irresolute.
- (ii) $h^{-1}(E)$ is $\lambda_N \alpha CS$ in (Ω_1, τ_1) , for every $\lambda_N \alpha CS E$ in (Ω_2, τ_2) .
- (iii) $h(\lambda N \alpha Cl(E)) \subseteq \lambda N \alpha Cl(h(E)) \forall E \subseteq \Omega_1.$
- (iv) $\lambda_{N-\alpha}Cl(h^{-1}(E)) \subseteq h^{-1}(\lambda_{N-\alpha}Cl(E)) \forall E \subseteq \Omega_2.$
- (v) $h^{-1}(\lambda_N \alpha Int(E)) \subseteq \lambda_N \alpha Int(h^{-1}(E)) \quad \forall E \subseteq \Omega_2.$
- (vi) h is $\lambda_{N-\alpha}$ -irresolute for every $\omega \in (\Omega_1, \tau_1)$.

Proof

(i) implies (ii) It is obvious.

(ii) implies (iii) Let $E \subseteq \Omega_1$. In that case, $\lambda_N - \alpha Cl(h(E))$ is a $\lambda_N - \alpha CS$ of (Ω_2, τ_2) . By (ii), h⁻¹($\lambda_N - \alpha Cl(h(E))$) is a $\lambda_N - \alpha CS$ in (Ω_1, τ_1) , and $\lambda_N - \alpha Cl(E) \subseteq \lambda_N - \alpha Cl(h^{-1}h(E)) \subseteq \lambda_N - \alpha Cl(h^{-1}(\lambda_N - \alpha Cl(h(E)))) = h^{-1}(\lambda_N - \alpha Cl(h(E)))$. So $h(\lambda_N - \alpha Cl(E)) \subseteq \lambda_N - \alpha Cl(h(E))$.

(iii) implies (iv) Let $E \subseteq \Omega_2$. By (iii), $h(\lambda_N - \alpha Cl(h^{-1}(E))) \subseteq \lambda_N - \alpha Cl(hh^{-1}(E)) \subseteq \lambda_N - \alpha Cl(E)$. So $\lambda_N - \alpha Cl(h^{-1}(E)) \subseteq h^{-1}(\lambda_N - \alpha Cl(E))$.

(iv) implies (v) Let $E \subseteq \Omega_2$. By (iv), $h^{-1}(\lambda_N - \alpha Cl(\Omega_2 - E)) \supseteq \lambda_N - \alpha Cl(h^{-1}(\Omega_2 - E)) = \lambda_N - \alpha Cl(\Omega_1 - h^{-1}(E))$. Since $\Omega_1 - \lambda_N - \alpha Cl(\Omega_1 - E) = \lambda_N - \alpha Int(E)$, subsequently $h^{-1}(\lambda_N - \alpha Int(E)) = h^{-1}(\Omega_2 - \lambda_N - \alpha Cl(\Omega_2 - E)) = \Omega_1 - h^{-1}(\lambda_N - \alpha Cl(\Omega_2 - E)) \subseteq \Omega_1 - \lambda_N - \alpha Cl(\Omega_1 - h^{-1}(E)) = \lambda_N - \alpha Int(h^{-1}(E))$.

(v) implies (vi) Let E be any $\lambda_N - \alpha OS$ of (Ω_2, τ_2) , subsequently $E = \lambda_N - \alpha Int(E)$. By (v), $h^{-1}(E) = h^{-1}(\lambda_N - \alpha Int(E)) \subseteq \lambda_N - \alpha Int(h^{-1}(E)) \subseteq h^{-1}(E)$. So, $h^{-1}(E) = \lambda_N - \alpha Int(h^{-1}(E))$. Thus, $h^{-1}(E)$ is a $\lambda_N - \alpha OS$ of (Ω_1, τ_1) . Therefore, h is $\lambda_N - \alpha$ -irresolute.

(i) implies (vi) Let h be $\lambda_{N-\alpha}$ -irresolute, $\omega \in (\Omega_1, \tau_1)$ and any $\lambda_{N-\alpha}OS \in Of(\Omega_2, \tau_2)$, $\ni h(\omega) \subseteq E$. Then $\omega \in h^{-1}(E) = \lambda_N - \alpha Int(h^{-1}(E))$. Let $F = h^{-1}(E)$ followed by F is a $\lambda_{N-\alpha}OS$ of (Ω_1, τ_1) and so $h(F) = hh^{-1}(E) \subseteq E$. Thus, h is $\lambda_{N-\alpha}$ -irresolute for each $\omega \in (\Omega_1, \tau_1)$.

(vi) implies (i) Let E be a $\lambda_{N-\alpha}OS$ of (Ω_2, τ_2) , $\omega \in h^{-1}(E)$. Then $h(\omega) \in E$. By hypothesis there exists a $\lambda_{N-\alpha}OS$ F of $(\Omega_1, \tau_1) \ni \omega \in F$ and $h(F) \subseteq E$. Thus $\omega \in F \subseteq h^{-1}(h(F)) \subseteq h^{-1}(E)$ and $\omega \in F = \lambda_{N-\alpha}Int(F) \subseteq \lambda_{N-\alpha}Int(h^{-1}(E)) \implies h^{-1}(E) \subseteq \lambda_{N-\alpha}Int(h^{-1}(E))$. Hence $h^{-1}(E) = \lambda_{N-\alpha}Int(f^{-1}(E))$. Thus, h is $\lambda_{N-\alpha}$ -irresolute.

3.5. Theorem

Let h: $\Omega_1 \rightarrow \Omega_2$ be a bijective function, where (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. Then h is λ_N - α -irresolute iff λ_N - α Int(h(E)) \subseteq h(λ_N - α Int(E)) $\forall E \subseteq \Omega_1$.

Proof

Let $E \subseteq \Omega_1$. By Theorem 3.4 and since h is bijective, $h^{-1}(\lambda_N - \alpha Int(h(E))) \subseteq \lambda_N - \alpha Int(h(E))) = \lambda_N - \alpha Int(E)$. So, $hh^{-1}(\lambda_N - \alpha Int(h(E))) \subseteq h(\lambda_N - \alpha Int(E))$. Consequently $\lambda_N - \alpha Int(h(E)) \subseteq h(\lambda_N - \alpha Int(E))$.

Conversely, let E be a $\lambda_N \cdot \alpha OS$ of (Ω_2, τ_2) . Then E = $\lambda_N \cdot \alpha Int(E)$. By hypothesis, $h(\lambda_N \cdot \alpha Int(h^{-1}(E))) \supseteq \lambda_N \cdot \alpha Int(h(h^{-1}(E))) = \lambda_N \cdot \alpha Int(E) = E$ implies $h^{-1}h(\lambda_N \cdot \alpha Int(h^{-1}(E))) \supseteq h^{-1}(E)$. Since h is bijective, $\lambda_N \cdot \alpha Int(h^{-1}(E)) = h^{-1}h(\lambda_N \cdot \alpha Int(h^{-1}(E))) \supseteq h^{-1}(E)$.

Hence $h^{-1}(E) = \lambda N - \alpha Int(h^{-1}(E))$. So $h^{-1}(E)$ is $\lambda N - \alpha OS$ of (Ω_1, τ_1) . Thus, h is $\lambda N - \alpha$ -irresolute.

3.6. Lemma

Let (Ω, τ) be a λ_N -TS and $E \subset \Omega$. Then $\lambda_N - \alpha Int(E) = E \bigcap \lambda_N - Int((\lambda_N - Cl(\lambda_N - Int(E))), \lambda_N - \alpha Cl(E) = E \bigcup \lambda_N - Cl(\lambda_N - Int(\lambda_N - Cl(E))).$

3.7. Lemma

Let (Ω, τ) be a λ N-TS, then

(i) $\lambda_{N-\alpha}Cl(E) \subseteq \lambda_{N-Cl}(E) \forall E \subseteq \Omega$.

(ii) $\lambda_{N-Cl}(E) = \lambda_{N-\alpha}Cl(E) \quad \forall E \subseteq \Omega$ where E is $\lambda_{N-\alpha}OS$.

Proof

(i) Let $E \subseteq \Omega$. Since λ_N -Int(E) $\subseteq \lambda_N$ - α Int(E), $U-\lambda_N$ -Int(E) $\supseteq U-\lambda_N-\alpha$ Int(E). Hence $\lambda_N-\alpha$ Cl(E) $\subseteq \lambda_N$ -Cl(E).

(ii) Let E be any $\lambda_N - \alpha OS$ of (Ω, τ) , then $E \subseteq \lambda_N - Int(\lambda_N - Cl(\lambda_N - Int(E)))$. Then $\lambda_N - Cl(E) \subseteq \lambda_N - Cl(\lambda_N - Int(\lambda_N - Cl(\lambda_N - Int(E)))) = \lambda_N - Cl(\lambda_N - Int(E)) \subseteq \lambda_N - Cl(\lambda_N - Int(\lambda_N - Cl(E)))$. So, $\lambda_N - Cl(E) \subseteq E \bigcup \lambda_N - Cl(\lambda_N - Int(\lambda_N - Cl(E)))$. By Lemma 3.6, $\lambda_N - Cl(E) \subseteq \lambda_N - \alpha Cl(E)$. By (i), $\lambda_N - \alpha Cl(E) \subseteq \lambda_N - Cl(E)$, therefore $\lambda_N - Cl(E) = \lambda_N - \alpha Cl(E)$.

3.8. Theorem

Let h: $\Omega_1 \rightarrow \Omega_2$ be a λ_N - α -irresolute function, where (Ω_1 , τ_1) and (Ω_2 , τ_2) be λ_N -TSs. Then λ_N -Cl(h⁻¹(E)) \subseteq h⁻¹(λ_N -Cl(E)) for every λ_N -OS E of Ω_2 .

Proof

Let E be any λ_N -OS of Ω_2 . Since h is λ_N - α -irresolute and by Lemma 3.7, λ_N - α Cl(h⁻¹(E)) = λ_N -Cl(h⁻¹(E)). By Theorem 3.4, λ_N - α Cl(h⁻¹(E)) \subseteq h⁻¹(λ_N - α Cl(E)) and by Lemma 3.7, h⁻¹(λ_N - α Cl(E)) \subseteq h⁻¹(λ_N -Cl(E)). Then λ_N - α Cl(h⁻¹(E)) \subseteq h⁻¹(λ_N -Cl(E)). Therefore λ_N -Cl(h⁻¹(E)) \subseteq h⁻¹(λ_N -Cl(E)).

3.9. Theorem

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs and h: $\Omega_1 \rightarrow \Omega_2$ is λ_N -semi-irresolute iff h⁻¹(E) is λ_N -SCS in Ω_1 , $\forall \lambda_N$ -SCS E of Ω_2 .

Proof

If h is λ_N -semi-irresolute, then for every λ_N -SOS F of Ω_2 , $h^{-1}(F)$ is λ_N -SOS in Ω_1 . If E is any λ_N -SCS of Ω_2 , then $\Omega_2 - E$ is λ_N -SOS. As a consequence, $h^{-1}(\Omega_2 - E)$ is λ_N -SOS but $h^{-1}(\Omega_2 - E) = \Omega_1 - h^{-1}(E)$ so that $h^{-1}(E)$ is λ_N -SCS in Ω_1 .

Conversely, if, for all λ_N -SCS E of Ω_2 , $h^{-1}(E)$ is λ_N -SCS in Ω_1 and if F is any λ_N -SOS of Ω_2 , then Ω_2 -F is λ_N -SCS. Also $h^{-1}(\Omega_2$ -F) = Ω_1 - $h^{-1}(F)$ is λ_N -SCS in Ω_1 . Accordingly $h^{-1}(F)$ is λ_N -SOS in Ω_1 . As a result, h is λ_N -semi-irresolute.

3.10. Theorem

If h₁: $(\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ is λ_N -semi-irresolute and h₂: $(\Omega_2, \tau_2) \rightarrow (\Omega_3, \tau_3)$ is λ_N -semi-irresolute, then h₂ \circ h₁: $(\Omega_1, \tau_1) \rightarrow (\Omega_3, \tau_3)$ is λ_N -semi-irresolute.

Proof

If $E \subseteq \Omega_3$ is λ_N -SOS, then $h_{2^{-1}}(E)$ is λ_N -SOS in Ω_2 because h_2 is λ_N -semi-irresolute. Consequently since h_1 is λ_N -semi-irresolute, $h_{1^{-1}}(h_{2^{-1}}(E)) = (h_2 \circ h_1)^{-1}(E)$ is λ_N -SOS in Ω_1 . Hence $h_2 \circ h_1$ is λ_N -semi-irresolute.

3.11. Example (h₂ ° h₁ is λ_N-semi-irresolute \neq h₁ & h₂ is λ_N-semi-irresolute)

Let h1: $(\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ be defined by h1(p) = s, h1(q) = r and h2: $(\Omega_2, \tau_2) \rightarrow (\Omega_3, \tau_3)$ be defined by h2(r) = u and h2(s) = v where $\Omega_1 = \{p, q\}, \Omega_2 = \{r, s\}$ and $\Omega_3 = \{u, v\}$. Let $\tau_1 = \{0_N, A, B\}$,

 $\tau_2 = \{0_N, C, D\}$ and $\tau_3 = \{0_N, E, F\}$. Now, $\{0_N, A, B, G\}$, $\{0_N, C, D, H\}$ and $\{0_N, E, F, I\}$ are λ_N -SOS of (Ω_1, τ_1) , (Ω_2, τ_2) and (Ω_3, τ_3) respectively, where

 $\begin{array}{ll} A = \left\langle \left(0.3, \, 0.7, \, 0.8\right), \left(0.2, \, 0.6, \, 0.8\right)\right\rangle, & B = \left\langle \left(0.4, \, 0.6, \, 0.7\right), \left(0.5, \, 0.5, \, 0.6\right)\right\rangle, \\ C = \left\langle \left(0.8, \, 0.4, \, 0.2\right), \left(0.8, \, 0.3, \, 0.3\right)\right\rangle, & D = \left\langle \left(0.6, \, 0.5, \, 0.5\right), \left(0.7, \, 0.4, \, 0.4\right)\right\rangle, \\ E = \left\langle \left(0.2, \, 0.6, \, 0.8\right), \left(0.3, \, 0.7, \, 0.8\right)\right\rangle, & F = \left\langle \left(0.5, \, 0.5, \, 0.6\right), \left(0.4, \, 0.6, \, 0.7\right)\right\rangle, \\ G = \left\langle \left(0.3, \, 0.7, \, 0.8\right), \left(0.4, \, 0.5, \, 0.7\right)\right\rangle, & H = \left\langle \left(0.7, \, 0.5, \, 0.4\right), \left(0.8, \, 0.3, \, 0.3\right)\right\rangle, \\ I = \left\langle \left(0.4, \, 0.5, \, 0.7\right), \left(0.3, \, 0.7, \, 0.8\right)\right\rangle. \end{array}$

Here, $h_2 oh_1$: $\Omega_1 \rightarrow \Omega_3$ defined by $h_2 \circ h_1(p) = v$ and $h_2 \circ h_1(q) = u$ is λ_N -semi-irresolute, but h_1 and h_2 are not λ_N -semi-irresolute.

3.12. Corollary

Let (Ω_1, τ_1) , (Ω_2, τ_2) and (Ω_3, τ_3) be λ_N -TSs. If $h_1: \Omega_1 \rightarrow \Omega_2$ and $h_2: \Omega_2 \rightarrow \Omega_3$ are $\lambda_N - \alpha$ -irresolute then $h_2 \circ h_1: \Omega_1 \rightarrow \Omega_3$ is $\lambda_N - \alpha$ -irresolute.

Proof

Let E is $\lambda_N - \alpha OS$ in (Ω_3, τ_3) . Since h_2 is $\lambda_N - \alpha$ -irresolute, $h_2^{-1}(E)$ is $\lambda_N - \alpha OS$ in (Ω_2, τ_2) . Also since h_1 is $\lambda_N - \alpha$ -irresolute, $h_1^{-1}(h_2^{-1}(E)) = (h_2 \circ h_1)^{-1}(E)$ is $\lambda_N - \alpha OS$ in (Ω_1, τ_1) . Therefore $h_2 \circ h_1$ is $\lambda_N - \alpha$ -irresolute.

3.13. Corollary

If h1: $(\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ is λ_N - α -irresolute (resp. λ_N -semi-irresolute, λ_N -pre-irresolute) and h2: $(\Omega_2, \tau_2) \rightarrow (\Omega_3, \tau_3)$ is λ_N - α Cts (resp. λ_N -SCts, λ_N -PCts) then h2 \circ h1: $(\Omega_1, \tau_1) \rightarrow (\Omega_3, \tau_3)$ is λ_N - α Cts (resp. λ_N -SCts, λ_N -PCts).

Proof

Let E is λ_N -OS in (Ω_3 , τ_3). Since h_2 is λ_N - α Cts (resp. λ_N -SCts, λ_N -PCts), $h_2^{-1}(E)$ is λ_N - α OS (resp. λ_N -SOS, λ_N -POS) in (Ω_2 , τ_2). Also since h_1 is λ_N - α -irresolute (resp. λ_N -semi-irresolute, λ_N -pre-irresolute), $h_1^{-1}(h_2^{-1}(E)) = (h_2 \circ h_1)^{-1}(E)$ is λ_N - α OS (resp. λ_N -SOS, λ_N -POS) in (Ω_1 , τ_1). Therefore $h_2 \circ h_1$ is λ_N - α Cts (resp. λ_N -SCts, λ_N -PCts).

3.14. Theorem

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. If h: $\Omega_1 \rightarrow \Omega_2$ is λ_N -semi-irresolute and λ_N -pre-irresolute then h is λ_N - α -irresolute.

Proof

Let E is λ_N - α OS in (Ω_2 , τ_2), then by Theorem 3.3, E is λ_N -SOS and λ_N -POS. Since h is λ_N -semi-irresolute and λ_N -pre-irresolute, h⁻¹(E) is λ_N -SOS and λ_N -POS. Therefore h⁻¹(E) is λ_N - α OS. Hence h is λ_N - α -irresolute.

3.15. Theorem

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. A function h: $\Omega_1 \rightarrow \Omega_2$ is λ_N - α Cts iff it is λ_N -SCts and λ_N -PCts.

Proof

It is clear from Theorem 3.3.

4. Contra λ_N-Irresolute Functions

4.1. Definition

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. Then h: $\Omega_1 \rightarrow \Omega_2$ is said to be contra λ_N - α -irresolute (resp. contra λ_N -semi-irresolute, contra λ_N -pre-irresolute) if the inverse image of every λ_N - α OS (resp. λ_N -SOS, λ_N -POS) in (Ω_2, τ_2) is a λ_N - α CS (resp. λ_N -SCS, λ_N -PCS) in (Ω_1, τ_1) .

4.2. Example

(i) Let h: $(\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ be defined as h(s) = u and h(t) = v, where $\Omega_1 = \{s, t\}$ and $\Omega_2 = \{u, v\}, \tau_1 = \{0_N, A, B\}, \tau_2 = \{0_N, C, D\}.$

- $A = \left< (0.2, 0.8, 0.9), (0.1, 0.7, 0.8) \right>, \qquad B = \left< (0.3, 0.5, 0.6), (0.4, 0.6, 0.7) \right>,$
- $C = \langle (0.8, 0.3, 0.1), (0.9, 0.2, 0.2) \rangle, \qquad D = \langle (0.7, 0.4, 0.4), (0.6, 0.5, 0.3) \rangle,$
- $G = \langle (0.3, 0.7, 0.8), (0.2, 0.6, 0.7) \rangle, \qquad H = \langle (0.7, 0.4, 0.2), (0.8, 0.3, 0.3) \rangle.$

Here, {A', B', G', 1_N} are λ_N - α CS of (Ω_1 , τ_1) and {0_N, C, D, H} are λ_N - α OS of (Ω_2 , τ_2). Consequently, h is contra λ_N - α -irresolute function.

(ii) Let h: $(\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ be defined as h(p) = v, h(q) = w and h(r) = u, where $\Omega_1 = \{p, q, r\}$ and $\Omega_2 = \{u, v, w\}, \tau_1 = \{0_N, A, B\}, \tau_2 = \{0_N, C, D\}.$

$$\begin{split} A &= \left\langle \left(0.2, \, 0.6, \, 0.8\right), \left(0.1, \, 0.7, \, 0.9\right), \left(0.2, \, 0.8, \, 0.9\right) \right\rangle, \\ C &= \left\langle \left(0.3, \, 0.4, \, 0.7\right), \left(0.2, \, 0.5, \, 0.8\right), \left(0.4, \, 0.6, \, 0.7\right) \right\rangle, \\ G &= \left\langle \left(0.3, \, 0.3, \, 0.1\right), \left(0.9, \, 0.2, \, 0.2\right), \left(0.8, \, 0.4, \, 0.2\right) \right\rangle, \\ H &= \left\langle \left(0.8, \, 0.5, \, 0.2\right), \left(0.7, \, 0.4, \, 0.4\right), \left(0.7, \, 0.6, \, 0.3\right) \right\rangle, \\ H &= \left\langle \left(0.9, \, 0.4, \, 0.2\right), \left(0.8, \, 0.3, \, 0.3\right), \left(0.7, \, 0.5, \, 0.3\right) \right\rangle. \end{split}$$

Here, {A', B', G', 1_N} are λ_N -SCS of (Ω_1 , τ_1) and {0_N, C, D, H} are λ_N -SOS of (Ω_2 , τ_2). Hence h is contra λ_N -semi-irresolute function.

(iii) Let $h : (\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ be defined as h(p) = w, h(q) = u and h(r) = v, where $\Omega_1 = \{p, q, r\}$ and $\Omega_2 = \{u, v, w\}$, $\tau_1 = \{0_N, A, B\}$, $\tau_2 = \{0_N, C, D\}$.

 $\begin{array}{ll} A = \left< (0.2, 0.7, 0.7), (0.3, 0.7, 0.8), (0.1, 0.8, 0.8) \right>, \\ C = \left< (0.9, 0.1, 0.1), (0.8, 0.2, 0.2), (0.8, 0.3, 0.2) \right>, \\ G = \left< (0.2, 0.8, 0.8), (0.2, 0.7, 0.8), (0.1, 0.9, 0.9) \right>, \\ \end{array} \right. \\ \begin{array}{ll} B = \left< (0.3, 0.7, 0.6), (0.4, 0.6, 0.7), (0.2, 0.7, 0.8) \right>, \\ D = \left< (0.8, 0.3, 0.2), (0.6, 0.3, 0.3), (0.7, 0.4, 0.4) \right>, \\ H = \left< (0.8, 0.2, 0.1), (0.7, 0.3, 0.2), (0.8, 0.3, 0.3) \right>. \\ \end{array}$

Here, {A', B', G', 1_N} are λ_N -PCS of (Ω_1 , τ_1) and {0_N, C, D, H} are λ_N -POS of (Ω_2 , τ_2). That's why h is contra λ_N -pre-irresolute function.

4.3. Theorem

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. Then h: $\Omega_1 \rightarrow \Omega_2$ is contra λ_N - α -irresolute iff for every λ_N - α CS E of Ω_2 , h⁻¹(E) is λ_N - α OS in Ω_1 .

Proof

If h is contra $\lambda_{N-\alpha}$ -irresolute, then for each $\lambda_{N-\alpha}OS F$ of Ω_2 , $h^{-1}(F)$ is $\lambda_{N-\alpha}CS$ in Ω_1 . If E is any $\lambda_{N-\alpha}CS$ of Ω_2 , then $\Omega_2 - E$ is $\lambda_{N-\alpha}OS$. Thus $h^{-1}(\Omega_2 - E)$ is $\lambda_{N-\alpha}CS$ but $h^{-1}(\Omega_2 - E) = \Omega_1 - h^{-1}(E)$ so that $h^{-1}(E)$ is $\lambda_{N-\alpha}OS$ in Ω_1 .

Conversely, if, for all $\lambda_N - \alpha CS \to f \Omega_2$, $h^{-1}(E)$ is $\lambda_N - \alpha OS$ in Ω_1 and if F is any $\lambda_N - \alpha OS$ of Ω_2 , then $\Omega_2 - F$ is $\lambda_N - \alpha CS$. Also, $h^{-1}(\Omega_2 - F) = \Omega_1 - h^{-1}(F)$ is $\lambda_N - \alpha OS$. Thus $h^{-1}(F)$ is $\lambda_N - \alpha CS$ in Ω_1 . Hence h is contra $\lambda_N - \alpha$ -irresolute.

4.4. Corollary

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. Then h: $\Omega_1 \rightarrow \Omega_2$ is contra λ_N -semi-irresolute (contra λ_N -pre-irresolute) iff for every λ_N -SCS (λ_N -PCS) E of Ω_2 , h⁻¹(E) is λ_N -SOS (λ_N -POS) in Ω_1 .

Proof

If h is contra λ_N -semi-irresolute (contra λ_N -pre-irresolute), then for each λ_N -SOS (λ_N -POS) F of Ω_2 , h⁻¹(F) is λ_N -SCS (λ_N -PCS) in Ω_1 . If E is any λ_N -SCS (λ_N -PCS) of Ω_2 , then $\Omega_2 - E$ is λ_N -SOS (λ_N -POS). Thus h⁻¹($\Omega_2 - E$) is λ_N -SCS (λ_N -PCS) but h⁻¹($\Omega_2 - E$) = $\Omega_1 - h^{-1}(E)$ so that h⁻¹(E) is λ_N -SOS (λ_N -POS) in Ω_1 .

Conversely, if, for all λ_N -SCS (λ_N -PCS) E of Ω_2 , $h^{-1}(E)$ is λ_N -SOS (λ_N -POS) in Ω_1 and if F is any λ_N -SOS (λ_N -POS) of Ω_2 , then $\Omega_2 - F$ is λ_N -SCS (λ_N -PCS). Also, $h^{-1}(\Omega_2 - F) = \Omega_1 - h^{-1}(F)$ is λ_N -SOS (λ_N -POS). Thus $h^{-1}(F)$ is λ_N -SCS (λ_N -PCS) in Ω_1 . Hence h is contra λ_N -semi-irresolute (contra λ_N -pre-irresolute).

4.5. Theorem

Let (Ω_1, τ_1) , (Ω_2, τ_2) and (Ω_3, τ_3) be λ_N -TSs. If $h_1: \Omega_1 \rightarrow \Omega_2$ and $h_2: \Omega_2 \rightarrow \Omega_3$ are contra λ_N -semi-irresolute functions, then $h_2 \circ h_1: \Omega_1 \rightarrow \Omega_3$ is λ_N -semi-irresolute.

Proof

If $E \subseteq Z$ is λ_N -SOS, then $h_{2^{-1}}(E)$ is λ_N -SCS in Ω_2 because h_2 is contra λ_N -semi-irresolute. Consequently, since h_1 is contra λ_N -semi-irresolute, $h_{1^{-1}}(h_{2^{-1}}(E)) = (h_2 \circ h_1)^{-1}(E)$ is λ_N -SOS in Ω_1 . Hence h_2oh_1 is λ_N -semi-irresolute.

4.6. Example ($h_2 \circ h_1$ is λ_N -semi-irresolute $\neq h_1$ & h_2 is contra λ_N -semi-irresolute)

Let $h_1: (\Omega_1, \tau_1) \rightarrow (\Omega_2, \tau_2)$ be defined by $h_1(l) = q$, $h_1(m) = r$, $h_1(n) = p$ and $h_2: (\Omega_2, \tau_2) \rightarrow (\Omega_3, \tau_3)$ be defined by $h_2(p) = v$, $h_2(q) = w$ and $h_2(r) = u$ where $\Omega_1 = \{l, m, n\}$, $\Omega_2 = \{p, q, r\}$ and $\Omega_3 = \{u, v, w\}$. Let $\tau_1 = \{0_N, A, B\}$, $\tau_2 = \{0_N, C, D\}$ and $\tau_3 = \{0_N, E, F\}$. Here, $\{0_N, A, B, G\}$, $\{0_N, C, D, H\}$ and $\{0_N, E, F, I\}$ are λ_N -SOS of (Ω_1, τ_1) , (Ω_2, τ_2) and (Ω_3, τ_3) where

 $A = \left< (0.2, 0.6, 0.8), (0.1, 0.7, 0.9), (0.2, 0.8, 0.9) \right>, \qquad B = \left< (0.3, 0.4, 0.7), (0.2, 0.5, 0.8), (0.4, 0.6, 0.7) \right>, \\ (0.4, 0.7))$

 $\mathsf{C} = \left< \left(0.2, \, 0.8, \, 0.9 \right), \left(0.2, \, 0.6, \, 0.8 \right), \left(0.1, \, 0.7, \, 0.9 \right) \right>, \qquad \mathsf{D} = \left< \left(0.4, \, 0.6, \, 0.7 \right), \left(0.3, \, 0.4, \, 0.7 \right), \left(0.2, \, 0.5, \, 0.8 \right) \right>,$

 $\mathsf{E} = \left< \left(0.1, \, 0.7, \, 0.9 \right), \left(0.2, \, 0.8, \, 0.9 \right), \left(0.2, \, 0.6, \, 0.8 \right) \right>, \qquad \mathsf{F} = \left< \left(0.2, \, 0.5, \, 0.8 \right), \left(0.4, \, 0.6, \, 0.7 \right), \left(0.3, \, 0.4, \, 0.7 \right) \right>,$

$$\mathsf{G} = \left< (0.3, 0.5, 0.7), (0.2, 0.6, 0.9), (0.3, 0.7, 0.8) \right>, \qquad \mathsf{H} = \left< (0.3, 0.7, 0.8), (0.3, 0.5, 0.7), (0.2, 0.6, 0.9) \right>,$$

 $I = \langle (0.2, 0.6, 0.9), (0.3, 0.7, 0.8), (0.3, 0.5, 0.7) \rangle.$

Here, $h_2 \circ h_1$: $\Omega_1 \rightarrow \Omega_3$ which is defined by $h_2 \circ h_1(l) = w$, $h_2 \circ h_1(m) = u$ and $h_2 \circ h_1(n) = v$ is λ_N -semi-irresolute, but h_1 and h_2 are not contra λ_N -semi-irresolute.

4.7. Corollary

Let (Ω_1, τ_1) , (Ω_2, τ_2) and (Ω_3, τ_3) be λ_N -TSs. If $h_1: \Omega_1 \rightarrow \Omega_2$ and $h_2: \Omega_2 \rightarrow \Omega_3$ are contra λ_N - α -irresolute (contra λ_N -pre-irresolute) functions, then $h_2 \circ h_1: \Omega_1 \rightarrow \Omega_3$ is a λ_N - α -irresolute (λ_N -pre-irresolute) function.

4.8. Theorem

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. If h: $\Omega_1 \rightarrow \Omega_2$ is contra λ_N - α -irresolute, then it is contra λ_N - α Cts.

Proof

Let E be any λN -OS in Ω_2 . Then E is λN - α OS in Ω_2 . Since h is contra λN - α -irresolute, h⁻¹(E) is a λN - α CS in Ω_1 . It shows that h is contra λN - α Cts function.

4.9. Theorem

Let (Ω_1, τ_1) , (Ω_2, τ_2) and (Ω_3, τ_3) be λ_N -TSs. If h₁: $\Omega_1 \rightarrow \Omega_2$ is contra λ_N - α -irresolute and h₂: $\Omega_2 \rightarrow \Omega_3$ is contra λ_N - α Cts, then h₂ \circ h₁: $\Omega_1 \rightarrow \Omega_3$ is λ_N - α Cts.

Proof

Let $E \subseteq \Omega_3$ is λN -OS. Since h_2 is contra λN - αCts , $h_2^{-1}(E)$ is λN - αCS in Ω_2 . Consequently, since h_1 is contra λN - α -irresolute, $h_1^{-1}(h_2^{-1}(E)) = (h_2 \circ h_1)^{-1}(E)$ is λN - αOS in Ω_1 , by Theorem 4.3. Hence $h_2 \circ h_1$ is λN - αCts .

4.10. Corollary

Let (Ω_1, τ_1) , (Ω_2, τ_2) and (Ω_3, τ_3) be λ_N -TSs, and $h_1: \Omega_1 \rightarrow \Omega_2$ and $h_2: \Omega_2 \rightarrow \Omega_3$ be two functions. Then if h_1 is contra λ_N -semi-irresolute (contra λ_N -pre-irresolute) and h_2 is contra λ_N -SCts (contra λ_N -PCts), then $h_2 \circ h_1: \Omega_1 \rightarrow \Omega_3$ is λ_N -SCts (λ_N -PCts).

4.11. Theorem

Let (Ω_1, τ_1) and (Ω_2, τ_2) be λ_N -TSs. If h: $\Omega_1 \rightarrow \Omega_2$ is contra λ_N -semi-irresolute and contra λ_N -pre-irresolute, then h is contra λ_N - α -irresolute.

Proof

Let E is λ_N - α OS in (Ω_2 , τ_2), then by Theorem 3.3, E is λ_N -SOS and λ_N -POS. Since h is contra λ_N -semi-irresolute and contra λ_N -pre-irresolute, h⁻¹(E) is λ_N -SCS and λ_N -PCS. Therefore h⁻¹(E) is λ_N - α CS. Hence h is contra λ_N - α -irresolute.

5. Conclusion

In this confab, we instigated λ_N - α -irresolute function, λ_N -semi-irresolute function and λ_N -pre-irresolute function on λ_N -TS. Subsequently, we have analyzed its various properties. Followed by this, the new postulations of contra λ_N - α -irresolute function, contra λ_N -semi-irresolute function and contra λ_N -pre-irresolute function were put forth on λ_N -TS and their features were probed along with illustrations.

 λ_{N} -TS idea can be further developed and extended in the actual life applications such as medical field, robotics, machine learning, neural networks, natural image sensing, speech recognition, and so on.

In future, it provokes to apply these perceptions in further extensions of λ_N -TS such as almost continuity and its unique characteristics in G_N-TSs along with some separation axioms related to G_N-TSs. Also, this concept may be extended to Intuitionistic Fuzzy and Neutrosophic Fixed Point Theory.

References

- 1. Atanassov K.T: Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- 2. Chang C.L: Fuzzy topological spaces, Journal of Mathematical Analysis and Application, 24(1968), 183–190.
- 3. Crossley S.G and Hildebrand S.K: Semi topological properties, Fund. Math., 74(1972), 233-254.
- Dogan Coker: An introduction to intuitionistic fuzzy topological spaces, *Fuzzy Sets and Systems*, 88(1997), 81–89.
- Floretin Smarandache: Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- Floretin Smarandache: Neutrosophic Set: A Generalization of Intuitionistic Fuzzy set, *Journal of Defense* Resources Management, 1(2010), 107–116.
- 7. Floretin Smarandache: A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic Probability, *American Research Press*, Rehoboth, NM, 1999.
- Raksha Ben N, Hari Siva Annam G: Some new open sets in μN topological space, Malaya Journal of Matematik, 9(1)(2021), 89-94.
- 9. Raksha Ben N, Hari Siva Annam G: Generalized Topological Spaces via Neutrosophic Sets, J. Math. Comput. Sci., 11(2021), 716-734.
- Salama A.A and Alblowi S.A: Neutrosophic set and Neutrosophic topological space, *ISOR J. Mathematics*, 3(4)(2012), 31–35.
- Salama A.A, Florentin Smarandache and Valeri Kroumov: Neutrosophic Closed set and Neutrosophic Continuous Function, *Neutrosophic Sets and Systems*, 4(2014), 4–8.
- Santhi P and Poovazhaki R: On Generalized Topological Contra Quotient Functions, Indian Journal of Mathematics Research, 1(1)(2013), 123-136.
- 13. Vijaya S and Poovazhaki R: On Generalized Topological Quotient Functions, *Journal of Advanced Research in Scientific Computing*, 6(2)(2014), 1-10, Online ISSN: 1943-2364.
- 14. Wadel Faris Al-Omeri and Florentin Smarandache: New Neutrosophic Sets via Neutrosophic Topological Spaces, *New Trends in Neutrosophic Theory and Applications*, (2)(2016), 1-10.
- Yuvarani A, Vijaya S and Santhi P: Weaker forms of Nano Irresolute and its Contra Functions, *Ratio Mathematica*, (43)(2022), doi: http://dx.doi.org/10.23755/rm.v43i0.764, ISSN:1592-7415, eISSN:2282-8214.
- 16. Zadeh L.A: Fuzzy set, Inform and Control, 8(1965), 338-353.

Received: July 25, 2022. Accepted: September 22, 2022