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Abstract: Hesitancy is an imperative part of belief system. In order to counter the hesitancy in
neutrosophic cubic set (NCS), the notion of neutrosophic cubic hesitant fuzzy set (NCHFS) is
presented. NCHEFS couple NCS with hesitant fuzzy set (HFS). Operational laws in NCHFS are
developed with examples. To meet the challenges of decision making problems, neutrosophic cubic
hesitant fuzzy geometric (NCHFG) aggregation operators, neutrosophic cubic hesitant fuzzy
Einstein geometric (NCHFEG) aggregation operators, neutrosophic cubic hesitant fuzzy hybrid
geometric (NCHFHEG) aggregation operators are developed in the current study. At the end a
multi expert decision making (MEDM) process is proposed and furnished upon numerical data of a
company as applications.

Keywords: Neutrosophic Cubic Fuzzy Hesitant Set (NCHFS), Neutrosophic Cubic Hesitant Fuzzy
Weighted geometric (NCHFWG) operator, Neutrosophic Cubic Hesitant Fuzzy Einstein Geometric
(NCHFEG) operator, Neutrosophic Cubic Hesitant Fuzzy Einstein Hybrid Geometric (NCHFEHG)
Operator. multi expert decision making (MEDM)

1. Introduction

We are in different mental states of acceptance, hesitancy and refusal while taking decisions in life.
Many methods in MADM ignore the uncertainty and hence yields the results which are unreliable.
The role of expert in decision making (DM) is vital. The participation of more than one expert in a
DM process reduce the uncertainty. Zadeh proposed the notion of fuzzy set (FS) [1] as a function
from a given set of objects to [0,1] called membership. Later Zadeh extended the idea to interval
valued fuzzy set (IVES) [2]. An IVFES a function from a given set of objects to the subintervals of [0,1].
The FS theory has many applications in artificial intelligence, robotics, computer networks,
engineering and DM [3,4]. Different researchers [5-8] established similarity measures and other
important concepts and successfully apply their models to medical diagnosis and selection criteria.
R.A. Krohling and V.C. Campanharo, M. Xia and Z. Xu, M.K. Mehlawat and P.A. Guptal established
different useful techniques to sort out MADM problems [9-11]. K. Atanassov introduced
non-membership degree and presented the idea of intuitionistic fuzzy set (IFS) [12] which consist of

both membership and non-membership degree within [0,1]. An extension of IFS was proposed and
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named as interval value intuitionistic fuzzy set (IVIFS) [13]. IVIFS contains membership and
non-membership in the form of subintervals of [0,1]. This characteristic of intuitionistic fuzzy set
made it more applicable then previous versions and attracted researchers [14-16] to apply it to the
fields of science, engineering and daily life problems. Jun et al., combined IVFS and FS and proposed cubic
set (CS). The CS is the generalization of IFS and IVIFS. CS become vital tool to deal the vague data. Several
researchers explored algebraic aspects and apparently define ideal theory in CS [17-20]. F. Smarandache
initiated the concept of indeterminacy and describe the notion of neutrosophic set (NS) [21]. NS consist of three
components truth, indeterminacy and falsehood and all are independent. This characteristic of neutrosophic set
enabled researchers to work with inconsistent and vague data more effictively. Wang et al proposed single
valued neutrosophic set (SNVS) [22] by restricting components of NS to [0,1]. The NS was further extended to
interval neutrosophic set (INS) [23]. After the appearance of NS, researchers put their contributions in
theoretical as well as technological developments of the set [24-27]. Several researchers use neutrosophic and
interval valued neutrosophic environments to construct MADM methods [28-32]. Zhan et al.,define
aggregation operators and furnished some applications in MADM [33]. Torra define hesitant fuzzy set (HFS)
[34] in contrast of FS. HFS on X is a function that maps every object of X into a subset of [0, 1]. Jun et al.,
presented the notion of NCS [35] which consist of both INS and NS. These characteristics of NCS make it a
powerful tool to deal the vague and inconsistent data more efficiently. Soon after its exploration it attracted the
researcher to work in many fields like medicine, algebra, engineering and DM. Later the idea of cubic hesitant
fuzzy set was introduced by Tahir et al.,[36]. Ye [37] establish similarity measure in neutrosophic hesitant
fuzzy sets (NHFS) and established MADM method using these measures. Liu et. Al [38] proposed hybrid
geometric aggregation operators in interval neutrosophic hesitant fuzzy sets (INHFS)and discuss its
applications in MADM. Zhu et al. [39] proposed the method of f-normalization to enlarge a HFE, which is a
useful technique in case of different cardinalities.

The remaining of the paper is formulated as follows. In section 2, we reviewed some basic definitions used
later on. Section 3 deals with NCHFS, algebraic and Einstein operational laws in NCHFS. In section 4 we
introduced aggregation operators in NCHFS. Section 5 concern with establishing a MEDM method based on
NCHFG operators and use this method in MEDM problem.

2. Preliminaries
Definition 2.1: [1] A fuzzy set (FS)on a nonempty set W is a mapping I': W — [0,1].

Definition 2.2: [12] The cubic set (CS) on a nonempty set Z is defined by u = (x;I(x), §(x)/x € X), where
I(x) isanIVFSon Zand §(x) isanFSon Z.

Definition 2.3: [22] A neutrosophic set associated with a crisp set S, is a set of the form pu=
(e;&r(e), & (e), &x(e) /e € S) where &r,&;,&R: S — [0,1] respectively called a truth membership function, a
non-membership function and a false membership function.

Definition 2.4: [34] A hesitant fuzzy set on a crisp set W is a mapping which assigns a set of values in [0,1], to
each element of W.

Definition 2.5: [35] A neutrosophic cubic set in a nonempty set E is defined as a pair (B,u) where B =
(x; Br(e),B;(e),Br(e)/e € E) isan INS and u = {x; ur(e), u;(e), ur(e)/e € X) isaNS.

Definition 2.6: [39] A neutrosophic hesitant fuzzy set a nonempty set E is described as u =

(x; ur(e), i (e), up(e) /e € E)where ur(e), u;(e), up(e) are three HFSs such that ur(e) + u;(e) + up(e) <
3.
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Definition2.7: [40] The object ¢ = {x;&;(x),&(x), &x(x)/x € X), s called an INHFS on X,
whereér(x), & (x),ér(x) are IHFSs.
Zhu et al. proposed the following g-normalization method to enlarge a hesitant fuzzy element, which is a
useful technique in case of different cardinalities.
Definition 2.8:[41] Let m* and m~ be the maximum and minimum elements of an hesitant fuzzy set H and
¢(0 < ¢ < 1) anoptimized parameter. We call m = {m* + (1 — {)m™~ an added element.

3. NCHFS and operational Laws in NCHFS
Definition3.1: Let X be a nonempty set. A neutrosophic cubic hesitant fuzzy set in X is a pair a = (4, 1)
where A = (x; A7 (x), A;(x),Ap(x)/x € X) is an interval-valued neutrosophic hesitant set in X and 1 =
(x; A7(x), A, (x), Ap(x)/x € X) is a neutrosophic hesitant set in X. Furthermore A; = {[Ak, AV ];j =

Jr’ 7Tt

1., 044, ={[AF,AV];j =1,...m}, Ap = {[4},, AV ];j = 1,..,n} are some interval values in [0,1] and

Jr JF’*7JF
Ar={Aj=1 .t ={;) =1, ...} Ar = {4;,;j = 1, ..., t} are some values in [0,1].
Example 3.2: LetX = {u,v,w} The pair a = (4,1) with

A-0)={0205)[02.07) 1 () ={030507) A (1) = {0204 [03 08} 1. (1) ={0L0407) A- 1) = [0.104} 0,031 [06.08] & (1) ={04, 08}
A-()={[0205}02,07) 2 () ={0308},A ()= (102,03 [0108]} 2, ) ={0.7,08} AL ()= (0104} [0.03]} 2 () ={04.08)

A- (1) ={[0,05}[02,07) £ () ={0308}, A (w) ={[02,03}[0106]} /, () ={0.7,08} AL (2)= [0.1.041 0,0} 2. (w)={04,0}

isa NCHFS.
Definition 3.3: The sum of two NCHFSs a = (4, 1), 8 = (B, u) is defined as

W[4 B, -A A +B,-AB; ||| +B,-AB,.A +B,-AB; | 4B, AB|

a®p= - !
{ih +’ujT _AJ'T’UJ'T}’{AJ'I +’ujl _ﬂjl’uj\}’{/%jF}

Moreover the B-normalization is used in case of different cardinalities.
Example3.4:If

a=({[0.1,05],[0.2,0.7]} {[0.2,0.3],[0.1, 0.6} {[0.1,0.4],[0.0,0.3]} ,{0.1,0.2,{0.3,0.5,07},{0.4,0.8}),

and f=({[04,05],[0.3,0.4]},{[0.1,0.3,[0.2,0.5]}.{[0.1,04],[0.7,0.8]} {0.3,0.4,0.5}.{0.7,0.8}.{0.4,0.6}),
then using above definition and S-normalization with parameter ¢ = 0.5 we have
a®f= <{[0.46, 0.75],[0.44, 0.82]} , {[0.28, 0.51],0.28, 0.8]} , {[0.0L 0.16],[0, 0.24]} {0.03,0.06,0.1},{0.21,0.375,0.56},{0.64, 0.92}>.

Definition 3.5: The Product of two NCHFSs a = (4, 1), 8 = (B, u) is defined by

T FoE IR

{%”h }’{ﬂ“n Hi }'{’11'; = A }

o n{[A B AR L[ B: MBI (IA: 4B -A B A 4B B |

A Rehman and M. Gulistan, A Study of Neutrosophic Cubic Hesitant Fuzzy Hybrid Geometric Aggregation Operators and
its Application to Multi Expert Decision Making System



Neutrosophic Sets and Systems, Vol. 50, 2022 86

Moreover the B-normalization is used in case of different cardinalities.
Example3.6:If

o=({[0.1,05],[0.2,0.7){[0.2,0.3],[0.1,0.6} {[0.1,0.41,[0.0,0.3]} {0.1,0.2},{0.3,0.5,07},{0.4,0.8}) , and

$=({[0.4,05],[0.3,04]},{[0.1,0.3,[0.2,0.5]},{[0.1,0.4],[0.7,0.8]} {0.3,04,0.5},{0.7,0.8}.{0.4,0.6}) , then using
above definition and S-normalization with parameter ¢ = 0.5 we have

05 {[0.04,0.25],[0.06,0.28]},{[0.02,0.09],[0.02, 0.3}, {[0.19,0.64],[0.7,0.86]
) {0.37,0.49,0.6},{0.79,0.875,0.94},{0.16,0.48} '

Definition 3.7: The scalar multiplication of a scalar q with a NCHFS a = (4, 1) is defined by

(1 ) 2o ] e o O ()
{1_(1_/% )q}’{l_(l_lj. )q}’{(’% )q}

Example3.8:If
a= <{[0.1, 0.5],[0.2, 0.7]} ,{[0.2, 0.3],[0.4, 0.6]} ,{[0.1, 0.4],[0.0, 0.3]} ,{0.1,0.2},{0.3,0.5}{0.4, 0.8}>
then using above definition with g=3 we have

.., 1027.0875],[0.488,0.973], [0.488,0.657],[0.271.0.936] {[0.001064] [0.0.27],
“ {0.001,0.008},{0.27,0.125},{0.784,0.992} '

Definition 3.9: For NCHFS a = (4, 1) and a scalar ¢

() )T 20 ) - )
{(lpr )q}’{(’lm )q}’{l_(l_iw )q}

where a? = a @ a® ... @a(q — times) moreover a? isa NCHF value for every g > 0.
Definition 3.10: The Einstein sum of two NCHFSs a = (4, 1), 8 = (B, ) is defined by

{ A8 A 4B } { A 4B A B } A;Bf. A; B}
war By A B (]| A Bl A E) [ 1+(1,AjLF )(LBJLF)’“(LA?F )(LBE’F) !
a® pf=

{ le FHy } { )"j| i, } /IJF Hig

Ledg g [0 | Wy m, | 1+(H,-F )(17,1&)

Moreover the S-normalization is used in case of different cardinalities.
Definition 3.11: The Einstein product of two NCHFSs a = (4, 1), B = (B, u) is defined by

L L U U L L U pU
AL BL A BY A Bl A By
1+(1—AjL )(1—!3,-L ) ' 1+(1—A‘jJ )(1—3}J ) ! 1+(1—AjL )(1—8}‘ ) ' 1+(1—A}’ )(1—!3‘,-J ) '
T T T T 1 | | |

L L U U
|:AJ-F+BJ-F A +Bj. :| Ay i, A, 1, {AJ-F i }
L gt ? Y gy ! ' V) 144w
LA BE 1oAY BY 1+(1_/1JT )(1—pjT ) 1+(1_4j| )(1_;,“ ) e Aig

a’ =

®Eﬂ:
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Moreover the B-normalization is used in case of different cardinalities.
Definition 3.12: The Einstein scalar multiplication of a scalar q with a NCHFS a = (4, 1) is defined by

{(M}T R AN AR A) }} {[(w g Y A S )}}

(1+A]~LT )q+(1fAjLT )q (1+ALJ~JT )q+(1fAj-JT) (1+AL )q+( A )q LAY )q+(1fA§JI )q
. 2(a )q oA )q

9 {|:(2A}'F )q+(AjLF 2 A )q+(AF }}

{(1+,1jT)q(1/1jT)q} (1+,1,-|)q - ﬂj,)q { IF }
(1+/1]T)q+(1—/1]T)q 1 (1+zjl)q+(1—zjl l (Z—Ajp)q+(/1jF)q

Theorem 3.13: For a scalar g and a NCHFS a = (4, 1) we have
5 }

{ LIS, }{ ) s }}
(o o oo (L oot

o - {|: (LA, )q—(l—A}'T )q '(1+A‘,-JF )q—(l—AJUF )q }},{ 2, )q },{ 2%, )q }’
(1+AjLF )q+(1fAjLF )q (1+A‘;F )q+(1fA‘jJF )q (Z’lir )q+(/1jT )q (Z*Ah)q*(’lh )q

where af' = @ @; a @5 ... @ a(q — times) moreover aZ? is a NCHF value for every g > 0.
Proof: Using induction on g. for g=1 we have

ol

(Z*AjT)(JT ZAU 28 (A ) (25 Jo(45)

oo [l s Ei‘ii JHEy }’{@_2(313«»}'
ettt >}

(s+ar )m—(l—AjLT )m (a7, )m—(l—AﬁJF )m :|} { 2(4]-T )m } { 2(1j|)m }
(1+A}F)m+(1—AjLF)m’(1+A§JF )er(l—AfF )m ’ (2—/1J-T)m+(le )m ’ (2—,1]|)m+(1jl)m ’

aE™is neutrosophic cubic hesitant fuzzy value. Using assumption, we have
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A(A}_T )m+1 m+
((Z’AjLT )P (AL ) )((2 A}_T )1+(AfLr )1) (2 AU m, (2 AU 1 AU 1
uly 2(#:1; )" . 2(A1]-LT )* 2(AU )"1 2(AU P
(om0 | (o)) (A ) (25 ()
a(a ™ 4(AU mil
((z-A}I J+(AL )”‘)((Z—AJLI YA )1) (2 AR ) (2 AL (A ) )

i 2(A5)" 2(A5 ) 2(A0)" 2NN
+ 1 1
(- ) Al | (2 )1+(A}'I ) (- oA | (2-AY) (A

(@A )" -(1-AL )" (AR ) -(1-AL ) (1AL )"-(1-A3) (1AL Y -(1-AF )
((1+AL) m4(1-A )m)dl_((uAjLF =AY )1) ((1+AU )" +(1- AU )+((1+AU (- ALJ 1)
- 1+( (L AL )" (1AL )" )((1+A,LF J (AL )1)’l+((1+AU ) (1AL )" )((1+AU y (AL )1) k
(1+AL Y+ (1- AL "I\ (AL ) (-AR ) (AL )M+H1-A )™ | (@A (1A )
/1 m+l 4(/1j| )m+1
+(3 )m (22 ((271jI "+, )“)((zfzjI Yz )1)

/ﬁ
\
+
~
;;

\—//\\_4

2(2;,)" 24, )
jt ik " ! ! 1
+(l (HLJ-I ) )" (Z—Ajl ) )

(@edy == )" (edy ) -0 )
(1+2; )+(1;~ ™ (4 )+(Hip )"

1+ (L2 )m—(l—ljF TR )1—(1—11-F s
(W, ym 14, ) (2, )%(H,-F )&
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Loymil U ym+l
4A) 4A)

(-5 st

A" (A, )

((Z—Afl (A )m)((zng’I Yo(AY )1)

4(/_\]#_r )m+1 )m+1
((z-AjLT )”+(AJ-LT)m)(2-AjLT )1+(AL)) (2 A (z AL P(A) 1)
. (z-A;)m+(A}T)”‘-2(A;)m (2-A,LT)1+(A;)1-2(A;)1 '1+ (2 AU AL 2 AU ALY -2(AY )1
(2 )k " (2-A )1+(AjLT i (2 ALY A (2- AU A)

(244 )m+(A}'I )

(24\}' )1+(Ah *

l{(Z—Ah )"H(A}I -2 )m]{(Z—Ah )1+(A}'I Y2 )1} ' 1{(2—&]{ )"'+(A}’I -2(A) )’“]{(Z—A}’I )1+(Aljj| y-2(A )

(2 )"1+(AiuI )

((1+AL M1 AL )m][(hAL e AL 1) ((1+AL o A'- )1)[ 1+AL MMt AL )”‘]
f(1+AL M (1 A'- )””I(m'- e A'- ]
\
1+AL 1A A m}( 1+AL o 1AL )lj ((1+AL e AL 1] (1+AL M- A'- )”‘]
(1+AL m 1A'- )mI(hAL R 1A'-
\

7

[(1+AU (1 AU m]((m“ - AU )1j (1+AU P AU )1)( 1+AU (1 AU )’“j !
7)
J

[1+AU (L AU )mI(hAU e AU

[1+AU M- AU m){(hAU i AU 1] ((1+AU Pt A [1+AU

lAU j

ie
[1+AU )”‘+1AU I(hAUl lJJ J

f’
+()

1’
|

i m+l
)

)

%)W
1[(n +(z)2 }[
(2-2

m+1
AJI

)
2/1“) A )'"((2/1

.J

-

1{(2 l

((1+/1]F)f"-(1-z ))( (LA 1+((1+; )((1+/1 2@ ijF)l)
(w 4 )" )((m )

(@i "2 )" @A 1+( (24 )" =023 )" ) (@ Ay - (0240 )Y
(1+/1 )"+ ’“)( (2 )

(24\5’I )1+(AljJ| )*

|
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Definition 3.14: The Score, accuracy and certainty of a NCHFSa = (4,1) where A = (A1, A;, Ap), A =
{[AL, AV ;i =1, ., 1A, ={[4F, AV =1, ..o m} Ap = {[AF, AV ;i = 1, ... ,n}and A = (A7, A, Ap), A7 =

T’ 2T Jr JF’JF

Api=1.rh =i =1..,sh 4 ={4;j=1,..,t} aredefined as:

1(1 ! . " 1& . . 18 i .
s 1 E[f;(AjﬁAJ‘F)JFE;(Ah+Aj.)+H;(2—(AjT+AjF))j
a)==
2 11 18 1d )
+§(F§/lh +EJZ_;/IJ.I +¥JZ_;(1_,1]_F )]
| n )
(A A )+ E (A + A )+ DA + A )
H(a)=1% 1= r i= S t i1 |
EITRE DI RS IIN
j=1 j=1 j=1

Ce) =%{%§':(A;T PAY )+%iij}.

j=1 i

if a=({[0.1,05],[0.2,0.7]},{[0.2,0.3],[0.1,0.6]} ,{[0.1,0.4], [0,0.3]} {0.1,0.2},{0.3,0.5},{0.4,0.8}) , and
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p=({[04,05],[03,04]},{[0.1,0.3],0.2,05]},{[0.1,0.41,[0.7,0.8]} .{0.3,0.5},{0.7,0.8},{0.4,06}) , then
S(a) =0.404167,S() = 0.470833, H (') = 0.3222, H () = 0.4444,C(a) = 0.15,C () = 0.4.

W Scores M Accuracy Certainity

0.5

0.4

0.3

0.2

0.1

Figure 1: Scores, Accuracy and Certainty of above NHFSs

Definition 3.15: Let a = (4, 1), 8 = (B, u) are two NCHFSs. We say that ¢ > B if S(a) > S(B). If S(a) =
SB), then a>p if A(e) >AB). If A(a) =A(B), then a>p if C(a)>CB). If S(a) =
S(B), A(a) = A(B), C(a) > C(B), then a = B.

In the next section we define aggregation operators on neutrosophic cubic hesitant fuzzy set and prove
some elegant results.

4. Aggregation Operators
Definition 4.1: The Neutrosophic cubic hesitant fuzzy weighted geometric operator is defined as

n
NCHWG(«,,...,a,) = ®a;~‘ ,where ¢; ~ are neutrosophic cubic hesitant fuzzy values taken in
=

descending order with corresponding weight vector w = (wy, ..., w,,)*.
Definition 4.2: Neutrosophic cubic hesitant fuzzy order weighted geometric operator is defined as:

NCHFOWG(«,,...,a,) = Qn?(a(k)j )" where @, are neutrosophic cubic hesitant fuzzy values taken
P
in descending order with corresponding weight vector w = (wy, ..., w,,)°.
Definition 4.3: The Neutrosophic cubic hesitant fuzzy Einstein weighted geometric operator is defined as:
NCEHWG(«,,...,a,) = é(af)wj where ¢~ are neutrosophic cubic hesitant fuzzy values taken in
j=1

descending order with corresponding weight vector w = (wy, ..., w;)*
Definition 4.4: Neutrosophic cubic hesitant fuzzy Einstein ordered weighted geometric operator is defined as:

n E

NCHEOWG (a,...,) = ®)(e;

W
J . . . .
i ) where Q;, are neutrosophic cubic hesitant fuzzy values taken in

j=1

descending order with corresponding weight vector w = (wy, ..., wy)*
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Theorem 4.5: Let {a(k) = <A(k) ) ﬂ(k) >} the set of neutrosophic cubic hesitant with corresponding weight

vector w = (wy, ...)* fuzzy values, then

NCHFWG(q, ..., a,,) = {krm[(l— An, )Wk 71—1%(1— Ao )Wk }}’{f{(’im )Wk }

{kl_m[‘l(ﬂp'(“ )Wk },{1_ ill(l_ ﬂ'pF(k) )Wk

Proof: Using induction for m=2

2
NCHFWG(«,, a,) = Qe
k=1

k
e, i, )
{|:£[1(A;'(k) )Wk ’ill(A:'(k) )Wk :l}’{l:kﬁﬂ(A;T(k) )Wk ’Q(A;Rk) )Wk }}’

q W q Wi
NCHFWG (aly---aaq): {‘:1_g(1_ ApF(k)) ’l_]zg(l_ ApF(k) ) :|}’

For m = q we have

we prove for m=q+1

()" ©(ag )™ = {[1 (1A,

=~
L®-=
[N
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W W, | W W
q+1 L K q+1 U K q+1 L K q+1 U K
H ApT 1 H ApT 1 H Ap 1 H Ap 1
k=1 k=1 k=1 I k=1 I
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q+1 L K q+1 U k q+1 K
- 1- 1 |1-A 1= 1| 1- A7 I /1pT ,
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W W
q+1 k q+1 K
I1 Zp A1- 11 1—/1p
k=1 "I k=1 F
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Theorem 4.6: Let {a(k) = <A(k) Ao >} the set of neutrosophic cubic hesitant fuzzy values, then

i) Idempotency: If ¢, =,k =1,..m then NCHFWG(«,,...,2,,) = .

i) Monotonicity: If S(c;) 2 S(e)then NCHFWG(e,,) < NCHFWG(«, ) .

Theorem 4.7: Let {a(k) = <A(k) Ao >} the set of neutrosophic cubic hesitant with corresponding weight

vector w = (wy, ...)t fuzzy values, then
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Proof: we use induction.
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Using assumption, we have
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Definition4.8: Neutrosophic cubic hesitant fuzzy hybrid geometric operator (NCHFHG) is a mapping defined

wj .
] mwj

m
as NCHFHG(«,,...,«,,) =®(am)) , where @, ;) :(aj) is the jth largest value, m is the
j=1

balancing coefficient and w = (wy, ..., w,,,)¢ is the weighting vector.

Theorem 4.9: Let {a(k) =<A(k),/1(k)>} the set of neutrosophic cubic hesitant fuzzy values with

corresponding weight vector w = (wy, ...)t, then

[300." 08 805, 0.7
k=1\ Yok k=1\ Tk k=1 lo (k) k=1\ o)
NCHFHG (..., @) = {[1—91(1— A e (-Ay ) k}},{g(ﬁh ) }

{(%(;Lj )Wk},{l—&)(kzj )W}
k=1 lo (k) k=1 For (k)

Furthermore NCHFHG(er, @,,...,,,) is also a neutrosophic cubic hesitant fuzzy value.

Proof: Using induction for m=2

Wk

2
NCHFHG (o, 2,) = ® (@, , |
k=1

A Rehman and M. Gulistan, A Study of Neutrosophic Cubic Hesitant Fuzzy Hybrid Geometric Aggregation Operators and
its Application to Multi Expert Decision Making System



Neutrosophic Sets and Systems, Vol. 50, 2022 99

Wi W W W W2 Wa Wo W2
AL 1Ay Al ak 1 AY Ak | aY Al Ak |y ,
{[ JTa(l)] [ 'Ta(l)J ] H "a(l)J { J'cr(l)] [[ JTa(Z)J [ JTa(z)] } H "a(z)] [ J'a(Z)J ]
W W W W Wa W
- 1 l—AIj‘ 1 l—AlJ-J A1 1 1—A|j‘ 1- 1—AlJ=J A2 ] ,
Fo@) Fo To() Fo(2) Fo(2) M)
Wi W W W
% 1 14 2; 1 12
o Fow) lo(2) Fo(2)
AU

W, W, W, W
2 k 2 k 2 k 2 k
® A}‘ . ® Aﬁ’ , A}‘ L@ | A
S T = R S k=l g | k=t
2 . e, y Wi 2 Wi
= - ® | 1-A; 1= ® |1-A; 184 % ,
k= Fo(k) k= Fo(k) k=1 Tok)

—_—
I
®

For m=qg we have

Wi Wi Wi Wi
| AL ,c% A , | Ak ,% A
k= frg(k) k= JTU(k) k= Jla(k) k= Jlo_(k)

q "k
NCHFHG (g, rg ) = 1-® - ,
q
k= ’Ta(k)]

/L\
T
=
q'l'l
=
Ne——
=
I
T®a
/l_‘—\\
T
b2
—c
q'l'l
=
Ne——
=
T®a
~

we prove for m=q +1

[ ] ]Wqﬂ{ ! Wo+1 [ . ]Wqﬂ{ ! }Wqﬂ
AL | A Ak | A :
Town) | ot ] Yoy ) Mo

4 Y a1 q Y q "k q Y NEl g4 a1

® [a J ®{a J - 19 l—A}' 19 1—AlJ-J e , ® i 1—A}‘ i 1—AEJ il4 :

k=1l o (k) o) R = (EI Fr(gs) Fog4d) L

g || Vi LEl Y41
o4 {18117, 4 {1
k= o) = o) '5(g+) Folq4)

A Rehman and M. Gulistan, A Study of Neutrosophic Cubic Hesitant Fuzzy Hybrid Geometric Aggregation Operators and
its Application to Multi Expert Decision Making System



Neutrosophic Sets and Systems, Vol. 50, 2022

100

b (|
q+1 q+1 q+1 q+1
®Aj|'T ,®AEJ ,®A|].' ,®AljJ ,
(=1 k=1 k=1 (=1
otk a1 o
W, W, W
041 L k L k L q+1 ] L k L q+1
2- @ 1A 1+ 6 1-4 LK - 8 1A LA |
k:l k:l k=1
"ok "otk "o+ "otk "o+
" N : " 41 : ! g+l
- 2- 9 l—AEJ 14 ® 1—ALJ.J +1—AL].J | ® 1-AL].J 1—AEJ
k:l k:]_ k:l
ol ol o+ ol o+
W W,
q+1 k q+1 k
9|1 182 |
k=1 h k=1 |
a(k) a(k)
W W, W W W
041 k ] k q+1 ] k q+1
2- 8 |1-1 148 |11 W1on 18l o
k:]. k:]_ k:l
"ok "ol (041 "ok "o+
W, W, W,
k k k
g+1 g+1 g+1 g+1
® A}‘ ® AljJ ® AjL ® AljJ
k=1 k=1 k=1 k=1
To(k) To(k) (k) ')
W, W, W,
g+1 L k g+1 U k g+1
_ 1- ® |1-A 1- ® [1-A 1@ 14
Fo(k) Fo(k) To(k)
W, W,
g+1 k g+1 k
® | A - @ |1-2.
k=1 J k=1 E
o (k) o (k)

A Rehman and M. Gulistan, A Study of Neutrosophic Cubic Hesitant Fuzzy Hybrid Geometric Aggregation Operators and
its Application to Multi Expert Decision Making System




Neutrosophic Sets and Systems, Vol. 50, 2022 101

Theorem 4.10: With w; = % NCHFHG becomes NCHFWG.

Wm

Proof: NCHFHG () = () ®:® (21,1 )

Wm

~ () ®..9(a,)

= NCHFWG(a,, ..., a,)

Definition 4.11: Neutrosophic cubic hesitant fuzzy Einstein hybrid geometric operator(NCHFEHG) is a

Wi .
mw]

m

mapping defined as NCHFEHG(«,...,,) =®_ (a (,-)) where @, ;) = (aj) is the jth largest
j=1

value, m is the balancing coefficient and w = (wy, ..., w,,,)* is the weighting vector.

Theorem 4.12: Let {a(k) = <A(k) Ao >} the set of neutrosophic cubic hesitant fuzzy values with

corresponding weight vector w = (wy, ...)* then
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Proof: Using induction and from Theorem 3.12
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For m=qg we have
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Using assumption, we have
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Theorem 4.13: With w; = i NCHFEG becomes NCHFEWG.
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5.  An Application of NCHFG Aggregation Operator to MEDM Problems
This section concern with constructing algorithms using the NCHFWG for MEDM problems.

5.1. Algorithm
Step 1: Allocation of expert corresponding to their weight, identification of alternative and attributes.
Let {F;, F,, ..., E.} be the set of r alternatives, {K;,K,, ..., K;} be s attributes with corresponding weight vector
[wy, Wy, ..., ws]” such that w; € [0,1], Tw; =1 {M;, M,, ..., M,} be decision experts with corresponding
weight vector [Wp Wy, ..., wp]T such that w; € [0,1], ¥ w; = 1. we construct decision matrices D =
(dij)rxs, With entries as neutrosophic cubic hesitant fuzzy values.
Step 2. Transformation of decision matrices to aggregated decision matrix.
A single matrix consisting of s attributes is constructed by aggregating all decision matrices using NCHFWG
operators with corresponding weight vector of decision makers.
Step 3. Transformation of aggregated matrix to decision vector.
An r x 1 vector is obtained by aggregating the decision matrix using NCHFWG operators.
Step 4: Ranking alternatives.
The most desirable alternative with highest score by ranking them in descending order of scores.
Example 5.2: Using above algorithm, we have to choose the most desirable alternative among the alternatives
(Electronics companies) F,(p =1,2,3) on the basis of three attributes A; (price), A, (Electricity
consumption), A5 (design).
Step 1: Decision matrix for first expert
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{[0.1,0.5],[0.2,0.7]},
{[0.2,0.3],[0.1,0.6]},
{[0.1,0.5],[0.2,0.3]},
{0.4,0.6},{0.3,0.5},{0.3,0.4}
{[0.2,0.5],[0.3,0.7]},

@ {[0.3,0.4],[0.1,0.5]},
{[0.1,0.3],[0,0.2]},
{0.7,0.9},{0.3,0.4},{0.1,0.2}
{[0.4,0.5],[0.3,0.4]},
{[0.1,0.3],[0.2,0.5]},
{[0.1,0.4],[0.7,0.8]},
{0.4,0.5},{0.3,0.4},{0.2,0.4}

Explanation of decision matrix entries:

{[0.3,0.4],[0.2,0.9]},
{[0.2,0.6],[0.3,0.6]},
{[0.3,0.4],[0,0.1]},
{0.5,0.7},{0.3,0.4},{0.4,0.5}
{[0.1,0.3],[0.2,0.5]},
{[0.2,0.3],[0.1,0.6]},
{[0.1,0.4],[0,0.3]},
{0.4,0.5},{0.3,0.7},{0.3,0.5}
{[0.3,0.5],[0.1,0.4]},
{[0.2,0.3],[0.2,0.6]},
{[0.1,0.5],[0.6,0.8]},
{0.5,0.6},{0.1,0.4},{0.2,0.3}

{[0.3,0.7],[0.2,0.4]},
{[0.2,0.5],[0.1,0.6]},
{[0.2,0. 4] [0,0.1]},
{0.5,0.6},{0.2,0.4},{0.2,0.3}
{[0.1,0.4],[0.2,0.6]},
{[0.1,0.3],[0,0.2]},
{[0.2,0.4],[0,0.3]},
{0.4,0.5},{0.3,0.6},{0.1,0.3}
{[0.2,0.5],[0.1,0.4]},
{[0.2,0.5],[0.2,0.6]},
{[0.1,0.4],[0.6,0.7]},
{0.4,0.6},{0.3,0.4},{0.4,0.5}

In case of dﬂ), {[0.1,0.5],[0.2,0.7]} is interval hesitant degree of preference to attribute F; corresponding to

attribute K7, {[0.2,0.3],[0.1,0.6]} is interval hesitant degree of indeterminacy (preference/ non-preference) for
attributeF; corresponding to attribute K;, {[0.1,0.5],[0.2,0.3]} is interval hesitant degree of non-preference for
attribute F; corresponding to attribute K;, {0.4,0.6}} is hesitant degree of preference for attribute F;
corresponding to attribute K,, {0.3,0.5} is hesitant degree of indeterminacy (preference/ non-preference) for
attribute F; corresponding to attribute K;, {0.3,0.4} is hesitant degree of non-preference for attribute F;
corresponding to attribute K;, given by the first expert.

Decision Matrix for second expert

{[0.1,0.3],[0.2,0.5]},
{[0.2,0.4],[0.1,0.5]},
{[0.1,0.4],[0,0.3]},
{0.4,0.8},{0.3,0.4},{0.3,0.4}
{[0.1,0.5],[0.3,0.7]},

&) {[0.1,0.3],[0.1,0.2]},
{[0.2,0.4],[0,0.3]},
{0.6,0.7},{0.3,0.6},{0.4,0.5}
{[0.2,0.5],[0.1,0.4]},
{[0.2,0.4],[0.2,0.5]},
{[0.1,0.3],[0.8,0.9]},
{0.7,0.8},{0.6,0.8},{0.3,0.4}

Step 2

{[0.2,0.4],[0.2,0.7]},
{[0.1,0.3],[0,0.2]},
{[0.3,0.5],[0,0.3]},

{0.7,0.8},{0.3,0.6},{0.2,0.3}

{[0.3,0.6],[0.2,0.7]},

{[0.1,0.2],[0.2,0.5]},
{[0,0.3],[0.1,0.4]},

{0.7,0.8},{0.3,0.4},{0.2,0.3}

{[0.2,0.3],[0.4,0.5]},

{[0.1,0.4],[0.2,0.5]},

{[0.7,0.8],[0.1,0.2]},

{0.7,0.9},{0.7,0.8},{0.2,0.5}

{[0.2,0.5],[0.2,0.7]},
{[0,0.4],[0.1,0.3]},
{[0.3,0.5],[0,0.4]},

{0.6,0.7},{0.2,0.5},{0.4,0.5}

{[0.4,0.5],[0.4,0.7]},

{[0.2,0.3],[0.1,0.6]},
{[0.3,0.4],[0,0.3]},

{0.5,0.6},{0.3,0.5},{0.3,0.4}

{[0.5,0.7],[0.3,0.4]},

{{0.1,0.3],[0.2,0.5]},

{[0.1,0.4],[0.2,0.6]},

{0.6,0.8},{0.1,0.4},{0.2,0.3}

using weight vector (0.5,0.5) for decision makers, the aggregated matrix is
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{[0.1,0.387298],[0.2,0.591608]},
{[0.2,0.34641],[0.1,0.547723]},
{[0.1,0.452277],[0.105573,0.3]},

{0.4,0.69282},
{0.3,0.447214},
{0.3,0.4}

{[0.141421,0.5][0.3,0.7]},
{[0.173205,0.34641],[0.1,0.316228]},
D = | [ {[0.151472,0.351926],[0,0.251669]},

{0.648074,0.793725},
{0.3,0.489898},
{0.265153,0.367544}

{[0.282843,0.5],[0.173205,0.4]},
{[0.141421,0.34641],[/0.2,0.5]},
{[0.1,0.351926),[0.755051,0.858579]

{0.52915,0.632456},
{0.424264,0.565685),
{0.251669,0.4}

{[0.244949,0.4] [0.2,0.793725]},
{[0.141421,0.424264],[0,0.34641]},
{[0.3,0.452277][0,0.206275]},

{0.591608,0.748331},
{0.3,0.489898},
{0.30718,0.408392}

{[0.173205,0.424264],[0.2,0.591608]},

{[0.141421,0.244949],[0.141421,0.547723]},
{[0.051317,0.351926],[0.051317,0.351926]

{0.52915,0.632456},
{0.3,052915},
{0.251669,0.408392}

{[0.244949,0.387298],[0.2,0.447214]},
{[0.141421,0.34641],[0.2,0.547723]},
{[0.480385,0.683772],[0.4,0.6]},

0.591608,0.734847},
0.264575,0.565685},
{0.2,0.408392)

{[0.244949,0.591608],[0.2,0.52915]},
{[0,0.447214],[0.1,0.424264]},
{[0.251669,0.452277],[0,0.265153]},

{0.547723,0.648074},
{0.2,0.4},
{0.30718,0.408392}

{[0.2,0.447214] [0.282843,0.648074]},
{[0.141421,0.3],[0,0.34641]},
{[0.251669,0.4][0,0.3]},

{0.447214,0.547723},
{0.3,0.547723},
{0.206275,0.351926}

{[0.316228,0.591608],[0.173205,0.4]},
{[0.141421,0.387298],[0.2,0.547723]},
{[0.1,0.4][0.434315,0.65359]},

{0.489898,0.69282},
{0.173205,0.4},
{0.30718,0.408392}

Step 3
using weight vector (0.3,0.4,0.3) for attributes and NCHWG we have the following decision vector

{[0.18722,0.4455],[0.2,0.643505]}
{[0,0.405589],[0,0.422372]},
{[0.229912,0.452277],[0.032918,0.25311]},
{0.514043,0.700344} ,{0.26564,0.463822} ,{0.305034, 0.405887}

{[0.170172,0.452793],{0.250618,0.639485},
{[0.15029,0.288831],[0,0.404857]},
{[0.14557,0.366739],[0.020852, 0.30752]}
{0.534655,0.648457},{0.3,0.522434} ,{0.242474,0.379688}

{[0.276117,0.47481],[0.183463,0.418256]}
{[0.141421,0.358201],{0.2,0.532946},
{[0.277533,0.524738],[0.549437,0.71955]}
{0.540653,0.690198} ,{0.268459,0.509824} ,{0.248982, 0.405887}

Step 4
Using Score function, we rank the alternatives asS(F;) = 0.491743,S5(F,) = 0.511797,S(F;) = 0.467604.
Hence most desirable alternative is F,.
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Figure 2: Ranking based on score function

Concluding Remarks

Decision making is one of the crucial problems in real life. For decision making different tools has been
established. Torra’s hesitant fuzzy set has been used in many practical problems due to flexibility of choosing
membership grades. On the other side Jun’s neutrosophic cubic set is capable of dealing truth, falsity and
indeterminacy membership grades, but the element of hesitancy is missing in truth and falsity membership
grades of neutrosophic cubic set. We have discussed the role of hesitancy in truth and falsity membership grades
of neutrosophic cubic set. We define neutrosophic cubic hesitant fuzzy set and some basic operations like
addition, multiplication, Einstein addition and multiplication in neutrosophic cubic hesitant fuzzy sets. Then we
prove some elegant results. In section 4 geometric aggregation operators are defined. Using these aggregation

operators an example is constructed.
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