[Neutrosophic Sets and Systems](https://digitalrepository.unm.edu/nss_journal)

[Volume 50](https://digitalrepository.unm.edu/nss_journal/vol50) Article 3

6-10-2022

Characterization of **γ**-Single Valued Neutrosophic Rings and Ideals

Muhammad Shazib Hameed

Zaheer Ahmad

Shahbaz Ali

Follow this and additional works at: [https://digitalrepository.unm.edu/nss_journal](https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journal%2Fvol50%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Hameed, Muhammad Shazib; Zaheer Ahmad; and Shahbaz Ali. "Characterization of γ-Single Valued Neutrosophic Rings and Ideals." Neutrosophic Sets and Systems 50, 1 (2022). [https://digitalrepository.unm.edu/nss_journal/vol50/iss1/3](https://digitalrepository.unm.edu/nss_journal/vol50/iss1/3?utm_source=digitalrepository.unm.edu%2Fnss_journal%2Fvol50%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact disc@unm.edu.

University of New Mexico

Characterization of γ -Single Valued Neutrosophic Rings and Ideals

Muhammad Shazib Hameed^{1,*}, Zaheer Ahmad² and Shahbaz Ali³

¹Department of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan. Email: shazib.hameed@kfueit.edu.pk

²Department of Mathematics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan. Email: zaheeir@gmail.com

³Department of Mathematics, The Islamia University of Bahawalpur, Rahim Yar Khan Campus 64200, Punjab, Pakistan. Email: shahbaz.math@gmail.com

[∗]Correspondence: Muhammad Shazib Hameed, shazib.hameed@kfueit.edu.pk

Abstract. In this paper, we investigate the notion of γ -single valued neutrosophic subrings and ideals. Also, several properties related to the algebraic structure of rings and ideals are discussed. Moreover, many characterizations are proposed on γ -single valued neutrosophic subrings and ideals.

Keywords: γ -single valued neutrosophic subrings; γ -single valued neutrosophic normal subrings; γ -single valued neutrosophic ideals.

———-

1. Introduction

Generally, the inconvenience of previously established strategies and designs is overcome by recently established fuzzy algebraic structures. Routine mathematics cannot always be used because of unclear and missing knowledge in certain regular structures. Various methodologies were seen as alternative groups to deal with these issues and avoid vulnerabilities, like probability, rough set, anda fuzzy set hypothesis. Unfortunately, each of these alternate mathematics has a side and inconveniences such as the majority of words like real, beautiful, famous that are not clearly observed or indeed vague. Henceforth, the rules for such terms vary from person to person.

Zadeh [\[1\]](#page-16-0), proposed the idea of the fuzzy set which is focussed on the possibility of the support highlight doling out an enrollment grade in $[0, 1]$ to deal with such sort of vague and questionable data. Taking into account the possibility of enrolment and non-investment,

M.S. Hameed, Z. Ahmad, S. Ali, Characterization of γ-Single Valued Neutrosophic Rings and Ideals

Atanassov [\[2,](#page-16-1) [3\]](#page-16-2) proposed an intuitionistic fuzzy set which is an augmentation of a fuzzy set. As an extension of intuitionistic fuzzy set, Smarandache's [\[4,](#page-16-3) [5\]](#page-16-4) introduced neutrosophic logic and sets. A neutrosophic set is based on three degrees: the level of participation, indeterminacy, and non-enrollment degree. The notion of a soft set is introduced in [\[6\]](#page-16-5) by Molodtsov. Several operations were added by Ali et al. in soft set in [\[7\]](#page-16-6). In [\[8\]](#page-16-7)- [\[10\]](#page-16-8), Yager has executed the idea of the Pythagorean fuzzy set. Peng et al. presented several findings in [\[11,](#page-16-9) [12\]](#page-16-10) on the measurements of the Pythagorean fuzzy and soft sets. Moreover, several new models have been investigated in [\[13\]](#page-16-11)- [\[16\]](#page-16-12).

In 1971, the concept of a fuzzy subgroup was proposed by Rosenfeld [\[17\]](#page-16-13) and the investigation of fuzzy subgroups began. Later on, many algebraic structures; like groups, rings, fields, graphs, and modules, etc. have been developed in [\[18\]](#page-16-14)- [\[38\]](#page-17-1). In this piece of work, we investigate the notion of γ -single valued neutrosophic rings, ideals, and sum and product of γ -single valued neutrosophic ideals. The proposed work is the generalization of many existing algebraic structures on fuzzy set, intuitionistic fuzzy set, (α, β) -intuitionistic fuzzy set etc.

The paper is structured as follows: we provide some basic concepts relating to γ -single valued neutrosophic rings and ideals in Section [3.](#page-4-0) We give an overview of the sum and product of γ -single valued neutrosophic ideals, also suggested several suggested several characterizations in Section [4.](#page-10-0)

2. Preliminaries

In this section neutrosophic subrings, neutrosophic normal subrings, and neutrosophic ideals are defined.

Definition 2.1. [\[18\]](#page-16-14) A single valued neutrosophic set U on the universe of discourse R is defined as:

$$
U = \{ \langle u, i_U(u), t_U(u), f_U(u) \rangle \mid u \in R \},\
$$

where $i, t, f : R \to [0, 1]$ and $0 \leq i_U(u) + t_U(u) + f_U(u) \leq 3$. Here, $i_U(u), t_U(u)$ and $f_U(u)$ are called membership function, hesitancy function and non-membership function respectively.

Definition 2.2. [\[18\]](#page-16-14) Let $U \& V$ be two SVNS on R . Then

- (1) $U \subseteq V$, $\Leftrightarrow U(u) \leq V(u)$. i.e. $i_U(u) \leq i_V(u)$, $t_U(u) \leq t_V(u)$ and $f_U(u) \geq f_V(u)$. Also $U = V \Leftrightarrow U \subseteq V$ and $V \subseteq U$.
- (2) $W = U \cup V$ such that $W(u) = U(u) \vee V(u)$ where $U(u) \vee V(u) = (i_{U}(u) \vee i_{V}(u), t_{U}(u) \vee t_{V}(u), f_{U}(u) \wedge f_{V}(u)),$ for each $u \in R$. i.e. $i_W(u) = \max\{i_U(u), i_V(u)\}, t_W(u) = \max\{t_U(u), t_V(u)\}$ and $f_W(u) = \min\{f_U(u), f_V(u)\}.$

\n- (3)
$$
W = U \cap V
$$
 such that $W(u) = U(u) \wedge V(u)$ where $U(u) \wedge V(u) = (i_U(u) \wedge i_V(u), t_U(u) \wedge t_V(u), f_U(u) \vee f_V(u)),$ for each $u \in R$.
\n- i.e. $iw(u) = \min\{iv(u), i_V(u)\}, tw(u) = \min\{tv(u), tv(u)\}$ and $fw(u) = \max\{fv(u), f_V(u)\}.$
\n- (4) $U^c(u) = (f_U(u), 1 - t_U(u), i_U(u)),$ for each $u \in R$. Here $(U^c)^c = U$.
\n

Definition 2.3. [\[39\]](#page-17-2) A single valued neutrosophic set (SVNS) $U = (i_U, t_U, f_U)$ of a ring R is said to be an single valued neutrosophic subring $(SVNSR)$ if

(1) $i_U(u - v) \geq \wedge \{i_U(u), i_U(v)\}.$ (2) $t_U(u - v) > \wedge \{t_U(u), t_U\}.$ (3) $f_U(u - v) \leq \sqrt{f_U(u)}, f_U(v)$. (4) $i_U(uv) \geq \wedge \{i_U(u), i_U(v)\}.$ (5) $t_U(uv) \geq \wedge \{t_U(u), t_U(v)\}.$ (6) $f_U(uv) \leq \sqrt{\{f_U(u), f_U(v)\}}, \forall u, v \in R$.

Definition 2.4. [\[39\]](#page-17-2) A subset $U = (i_U, t_U, f_U)$ of a ring R is said to be an single valued neutrosophic normal subring $(SVNNSR)$ of R if

(1) $i_U(uv) = i_U(vu)$. (2) $t_U(uv) = t_U(vu)$. (3) $f_U(uv) = f_U(vu), \ \forall \ u, v \in R.$

Definition 2.5. [\[39\]](#page-17-2) A single valued neutrosophic set $U = (i_U, t_U, f_U)$ a ring R is said to be an single valued neutrosophic left ideal (SV NLI) if

(1) $i_U(u - v) \geq \wedge \{i_U(u), i_U(v)\}.$ (2) $i_U(uv) > i_U(v)$. (3) $t_U(u - v) \geq \Lambda \{t_U(u), t_U(v)\}.$ (4) $t_U(uv) \ge t_U(v)$. (5) $f_U(u - v) \leq \sqrt{f_U(u)}, f_U(v)$. (6) $f_U(uv) \leq f_U(v), \ \forall \ u, v \in R.$

Definition 2.6. [\[39\]](#page-17-2) A single valued neutrosophic set $U = (i_U, t_U, f_U)$ a ring R is said to be an single valued neutrosophic right ideal (SV NRI) if

(1) $i_U(u - v) \geq \wedge \{i_U(u), i_U(v)\}.$ (2) $i_U(uv) \ge i_U(u)$. (3) $t_U(u - v) \geq \Lambda \{t_U(u), t_U(v)\}.$ (4) $t_U(uv) \ge t_U(u)$. (5) $f_U(u - v) \leq \sqrt{\{f_U(u), f_U(v)\}}$.

(6) $f_U(uv) \leq f_U(u), \ \forall \ u, v \in R.$

Definition 2.7. [\[39\]](#page-17-2) A single valued neutrosophic set $U = (i_U, t_U, f_U)$ a ring R is said to be an single valued neutrosophic ideal (SV NI) if

(1) $i_U(u - v) > \wedge \{i_U(u), i_U(v)\}.$ (2) $t_U(u - v) > \wedge \{t_U(u), t_U(v)\}.$ (3) $f_U(u - v) \leq \sqrt{f_U(u)}, f_U(v)$. (4) $i_U(u_V) > \sqrt{i_U(u)}, i_U(v)$. (5) $t_U(uv) \geq \sqrt{t_U(u)}, t_U(v)$. (6) $f_U(uv) \leq \wedge \{f_U(u), f_U(v)\}, \forall u, v \in R.$

3. γ -Single Valued Neutrosophic Subrings and Ideals

This section discusses some basic concepts and results related to γ -single valued neutrosophic subrings and ideals.

Definition 3.1. If U be a single valued neutrosophic subset of ring R then γ -single valued neutrosophic subset U is described as,

$$
U^{\gamma} = \Big\{ \langle u, i^{\gamma}(u), t^{\gamma}(u), f^{\gamma}(u) \rangle \mid i^{\gamma}(u) = \wedge \{i_{U}(u), \gamma\}, t^{\gamma}(u) = \wedge \{t_{U}(u), \gamma\}, f^{\gamma}(u) = \vee \{f_{U}(u), \gamma\}, u \in R \Big\},\
$$
 where $\gamma \in [0, 1]$.

Definition 3.2. Let $U \& V$ be two γ -SVNS on R . Then

- (1) $U^{\gamma} \subseteq V^{\gamma}$, $\Leftrightarrow U^{\gamma}(u) \le V^{\gamma}(u)$. i.e. $i_{U^{\gamma}}(u) \le i_{V^{\gamma}}(u)$, $t_{U^{\gamma}}(u) \le t_{V^{\gamma}}(u)$ and $f_{U^{\gamma}}(u) \geq f_{V^{\gamma}}(u)$. Also $U^{\gamma} = V^{\gamma} \Leftrightarrow U^{\gamma} \subseteq V^{\gamma}$ and $V^{\gamma} \subseteq U^{\gamma}$. (2) $W^{\gamma} = U^{\gamma} \cup V^{\gamma}$ such that $W^{\gamma}(u) = U^{\gamma}(u) \vee V^{\gamma}(u)$ where $U^{\gamma}(u) \vee V^{\gamma}(u) = (i_{U^{\gamma}}(u) \vee i_{V^{\gamma}}(u), t_{U^{\gamma}}(u) \vee t_{V^{\gamma}}(u), f_{U^{\gamma}}(u) \wedge f_{V^{\gamma}}(u)),$ for each $u \in R$. i.e. $i_{W\gamma}(u) = \max\{i_{U\gamma}(u), i_{V\gamma}(u)\}, t_{W\gamma}(u) = \max\{t_{U\gamma}(u), t_{V\gamma}(u)\}$ and $f_{W^{\gamma}}(u) = \min\{f_{U^{\gamma}}(u), f_{V^{\gamma}}(u)\}.$
- (3) $W^{\gamma} = U^{\gamma} \cap V^{\gamma}$ such that $W^{\gamma}(u) = U^{\gamma}(u) \wedge V^{\gamma}(u)$ where $U^{\gamma}(u) \wedge V^{\gamma}(u) = (i_{U^{\gamma}}(u) \wedge i_{V^{\gamma}}(u), t_{U^{\gamma}}(u) \wedge t_{V^{\gamma}}(u), f_{U^{\gamma}}(u) \vee f_{V^{\gamma}}(u)),$ for each $u \in R$. i.e. $i_{W^{\gamma}}(u) = \min\{i_{U^{\gamma}}(u), i_{V^{\gamma}}(u)\}, t_{W^{\gamma}}(u) = \min\{t_{U^{\gamma}}(u), t_{V^{\gamma}}(u)\}\$ and $f_{W^{\gamma}}(u) = \max\{f_{U^{\gamma}}(u), f_{V^{\gamma}}(u)\}.$ (4) $U^{\gamma c}(u) = (f_{U^{\gamma}}(u), 1 - t_{U^{\gamma}}(u), i_{U^{\gamma}}(u)),$ for each $u \in R$. Here $(U^{\gamma c})^c = U^{\gamma}$.

Definition 3.3. A γ -single valued neutrosophic set $(\gamma$ -SVNS) $U^{\gamma} = (i)^{\gamma}$ $U^{\gamma}_U, t^{\gamma}_U, f^{\gamma}_U$ of a ring R is said to be an γ -single valued neutrosophic subring (γ -SVNSR) if

 (1) i_l^{γ} $U^{\gamma}(u-v) \geq \wedge \{i_U^{\gamma}\}$ $U^{\gamma}(u), i^{\gamma}_U(v)\}.$ (2) t_L^{γ} $U^{\gamma}(u-v) \geq \wedge \{t^{\gamma}_U\}$ $U^{\gamma}(u), t^{\gamma}_U(v)\}.$

 (3) f_{U}^{γ} $U^{\gamma}(u-v) \leq \vee \{f_U^{\gamma}\}$ $U^{\gamma}(u), \ f^{\gamma}_U(v)\}.$ (4) i_l^{γ} $U^{\gamma}(uv) \geq \wedge \{i_U^{\gamma}\}$ $\tilde{U}(u), i\tilde{U}(v)\}.$ (5) t_I^{γ} $U^{\gamma}(uv) \geq \wedge \{t^{\gamma}_U\}$ $U^{\gamma}(u), t^{\gamma}_U(v)\}.$ (6) f_{II}^{γ} $U_U^{\gamma}(uv) \leq \vee \{f_U^{\gamma}$ $U^{\gamma}(u), \ f^{\gamma}_U(v) \}, \ \forall \ u, v \in R.$

Example 3.4. Let us consider the ring $(Z_2, +_2, *_2)$ where $Z_2 = \{0, 1\}.$ Let we define $U = \{ \langle u, i_U (u), t_U (u), f_U (u) \rangle \mid u \in Z_2 \}$ such that $i_U(0) = 0.8$, $i_U(1) = 0.4$, $t_U(0) = 0.4$, $t_U(1) = 0.3$ and $f_U(0) = 0.3$, $f_U(1) = 0.6$. Consider $\gamma = 0.5$, then $U^{\gamma} = \{ \langle u, i_U^{\gamma}(u), t_U^{\gamma}(u), f_U^{\gamma}(u) \rangle \mid u \in Z_2 \}$ where i^{γ} $U_U^{\gamma}(0) = 0.5, i_U^{\gamma}$ $U_U^{\gamma}(1) = 0.4, t_U^{\gamma}$ $U_U^{\gamma}(0) = 0.4, t_U^{\gamma}$ $U_U^{\gamma}(1) = 0.3$ and f_U^{γ} $U_U^{\gamma}(0) = 0.5, f_U^{\gamma}$ $U(U(1) = 0.6,$ $\Rightarrow SVNS U = \{ \langle u, i_U(u), t_U(u), f_U(u) \rangle \mid u \in Z_2 \}$ is an 0.5-SVNSR of Z_2 .

Proposition 3.5. If U and V be two γ -single-valued neutrosophic subset of ring R then $(U \cap V)^{\gamma} = U^{\gamma} \cap V^{\gamma}$.

Proof. Assume that U and V are two γ -single-valued neutrosophic subset of ring R.

$$
(U \cap V)^{\gamma}(u) = \left\{ \min\{\min\{i_U(u), i_V(u)\}, \gamma\}, \min\{\min\{t_U(u), t_V(u)\}, \gamma\}, \max\{\max\{f_U(u), f_V(u)\}, \gamma\} \right\}
$$

\n
$$
= \left\{ \min\{\min\{i_U(u), \gamma\}, \min\{i_V(u), \gamma\}\}, \min\{\min\{t_U(u), \gamma\}, \min\{t_V(u), \gamma\}\}, \max\{\max\{f_U(u), \gamma\}, \max\{f_V(u), \gamma\} \} \right\}
$$

\n
$$
= \left\{ \min(\{i_U^{\gamma}(u)\}, \{i_V^{\gamma}(u)\}), \min(\{t_U^{\gamma}(u)\}, \{t_V^{\gamma}(u)\}), \max(\{f_U^{\gamma}(u)\}, \{f_V^{\gamma}(u)\}) \right\} = U^{\gamma}(u) \cap V^{\gamma}(u), \forall u \in R.
$$

Theorem 3.6. Let U and V be two γ -SVNSRs of a ring R. Then $U \cap V$ is also an γ -SVNSR of R.

Proof. Let $U = \{ \langle u, i_U(u), t_U(u), f_U(u) \rangle \mid u \in R \}$ and $V = \{ \langle u, i_V(u), t_V(u), f_V(u) \rangle \mid u \in R \}$ be any two γ -SVNRs of a ring R.

$$
\Rightarrow U^\gamma = \{ \langle u, i^\gamma_U(u), t^\gamma_U(u), f^\gamma_U(u) \rangle \mid u \in R \} \text{ and } V^\gamma = \{ \langle u, i^\gamma_V(u), t^\gamma_V(u), f^\gamma_V(u) \rangle \mid u \in R \}.
$$

Then by using Proposition [3.5](#page-5-0)

$$
(U\cap V)^{\gamma}=U^{\gamma}\cap V^{\gamma}=\{\langle u, (i_U^{\gamma}\wedge i_V^{\gamma})(u), (t_U^{\gamma}\wedge t_V^{\gamma})(u), (f_U^{\gamma}\vee f_V^{\gamma})(u)\rangle\mid u\in R\}.
$$

Now for any $u, v \in R$, we have

(i) $(i_U^{\gamma} \wedge i_V^{\gamma})$ $V_V^{\gamma}(u-v) = \wedge \{i_U^{\gamma}\}$ $U^{\gamma}(u-v), i_V^{\gamma}(u-v)\}$ $\geq \wedge {\wedge} {\{i\}}^{\gamma}_L$ $U^{\gamma}(u), i^{\gamma}_U(v)\}, \wedge \{i^{\gamma}_V$ $\gamma_V^{\gamma}(u), i_V^{\gamma}(v)\}$ $= \wedge {\wedge} {i_l^{\gamma}}$ $U^{\gamma}(u), i^{\gamma}_V(u)\}, \wedge \{i^{\gamma}_U\}$ $U^{\gamma}(v), i^{\gamma}_U(v)\}$ $= \wedge \{ (i_U^{\gamma} \wedge i_V^{\gamma})$ $V(Y)(u), (i_U^{\gamma} \wedge i_V^{\gamma})$ $V^{\gamma}(v)\}.$ (ii) $(i_U^{\gamma} \wedge i_V^{\gamma})$ $V_V^{\gamma}(uv) = \wedge \{i_U^{\gamma}\}$ $U^{\gamma}_U(uv), i^{\gamma}_V(uv)\}$ $\geq \wedge {\wedge} {\{i\}}_L^{\gamma}$ $U^{\gamma}(u), i^{\gamma}_U(v)\}, \wedge \{i^{\gamma}_V\}$ $\gamma_V^{\gamma}(u), i_V^{\gamma}(v)\}$

$$
= \wedge \{\wedge \{i_U^{\gamma}(u), i_V^{\gamma}(u)\}, \wedge \{i_U^{\gamma}(v), i_U^{\gamma}(v)\}\}\n= \wedge \{(i_U^{\gamma} \wedge i_V^{\gamma})(u), (i_U^{\gamma} \wedge i_V^{\gamma})(v)\}.\n(iii) $(t_U^{\gamma} \wedge t_V^{\gamma})(u-v) = \wedge \{t_U^{\gamma}(u-v), t_V^{\gamma}(u-v)\}\}\n\geq \wedge \{\wedge \{t_U^{\gamma}(u), t_U^{\gamma}(v)\}, \wedge \{t_V^{\gamma}(u), t_V^{\gamma}(v)\}\}\n= \wedge \{\wedge \{t_U^{\gamma}(u), t_V^{\gamma}(u)\}, \wedge \{t_U^{\gamma}(v), t_U^{\gamma}(v)\}\}\n= \wedge \{(t_U^{\gamma} \wedge t_V^{\gamma})(u), (t_U^{\gamma} \wedge t_V^{\gamma})(v)\}.\n(iv) $(t_U^{\gamma} \wedge t_V^{\gamma})(uv) = \wedge \{t_U^{\gamma}(uv), t_V^{\gamma}(uv)\}\}\n\geq \wedge \{\wedge \{t_U^{\gamma}(u), t_U^{\gamma}(v)\}, \wedge \{T_B^{\gamma}(u), t_V^{\gamma}(v)\}\}\n= \wedge \{\wedge \{t_U^{\gamma}(u), T_B^{\gamma}(u)\}, \wedge \{t_U^{\gamma}(v), t_U^{\gamma}(v)\}\}\n= \wedge \{(t_U^{\gamma} \wedge t_V^{\gamma})(u), (t_U^{\gamma} \wedge t_V^{\gamma})(v)\}.$
\n(v) $(f_U^{\gamma} \vee f_V^{\gamma})(u-v) = \vee \{f_U^{\gamma}(u-v), f_V^{\gamma}(u-v)\}\n\leq \vee \{\vee \{f_U^{\gamma}(u), f_U^{\gamma}(v)\}, \vee \{f_V^{\gamma}(u), f_V^{\gamma}(v)\}\}\n= \vee \{\vee \{f_U^{\gamma}(u), f_V^{\gamma}(u)\}, \vee \{f_U^{\gamma}(v), f_U^{\gamma}(v)\}\}\n= \vee \{\vee \{f_U^{\gamma}(u), f_V^{\gamma}(v)\}, \vee \{f_V^{\gamma}(u), f_V^{\gamma}(v)\}\}\n= \vee \{\vee \{f_U^{\gamma}(u), f_V^{\gamma}(v)\}, \vee \{f_V^{\$$
$$

Remark 3.7. However, the union of two γ -SVNSRs is not an γ -SVNSR. For example, consider the set $R = \{0, a, b, a + b\}$, where $a + a = 0 = b + b$ and $a + b = b + a$ and $u \cdot v = 0$ for every $u, v \in R$. Then $(R, +, .)$ is a ring. Let $U = \{ \langle u, i_U (u), t_U (u), f_U (u) \rangle \mid u \in R \}$ and $V = \{ \langle u, i_V (u), t_V (u), f_V (u) \rangle \mid u \in R \}$, where $i_U(0) = 0.8$, $i_U(a) = 0.5$, $i_U(b) = 0.4 = i_U(a + b)$. $t_U(0) = 0.7$, $t_U(a) = 0.3$, $t_U(b) = 0.2 = t_U(a + b)$. $f_U(0) = 0.4$, $f_U(a) = 0.7$, $f_U(b) = 0.8 = f_U(a + b)$. $i_V(0) = 0.6$, $i_V(a) = 0.1$, $i_V(b) = 0.5$, $i_V(a+b) = 0.1$. $t_V(0) = 0.7$, $t_V(a) = 0.1$, $t_V(b) = 0.3$, $t_V(a + b) = 0.1$. $f_V(0) = 0.1$, $f_V(a) = 0.2$, $f_V(b) = 0.2$, $f_V(a+b) = 0.2$. Consider $\gamma = 0.6$ then $U^{\gamma} = \{ \langle u, i_U^{\gamma}(u), t_U^{\gamma}(u), f_U^{\gamma}(u) \rangle \mid u \in R \}$ and $V^{\gamma} = \{ \langle u, i_V^{\gamma}(u), t_V^{\gamma}(u), f_V^{\gamma}(u) \rangle \mid u \in R \},$ where i^{γ} $U_U^{\gamma}(0) = 0.6, i_U^{\gamma}(a) = 0.5, i_U^{\gamma}(b) = 0.4 = i_U^{\gamma}$ $U^{\gamma}(a+b).$ t_I^{γ} $U_U^{\gamma}(0) = 0.6, t_U^{\gamma}(a) = 0.3, t_U^{\gamma}(b) = 0.2 = t_U^{\gamma}$ $U^{\gamma}(a+b).$ f^{γ}_{IJ} $U_U^{\gamma}(0) = 0.6, f_U^{\gamma}(a) = 0.7, f_U^{\gamma}(b) = 0.8 = f_U^{\gamma}$ $U^{\gamma}(a+b).$ $i\hat{\chi}$ $V_V^{\gamma}(0) = 0.6, i_V^{\gamma}(a) = 0.1, i_V^{\gamma}(b) = 0.5, i_V^{\gamma}(a+b) = 0.1.$ M.S. Hameed, Z. Ahmad, S. Ali, Characterization of γ -Single Valued Neutrosophic Rings and Ideals

 $t^{\gamma}_{\rm V}$ $V_V^{\gamma}(0) = 0.6, t_V^{\gamma}(a) = 0.1, t_V^{\gamma}(b) = 0.3, t_V^{\gamma}(a+b) = 0.1.$ f_V^{γ} $V_V^{\gamma}(0) = 0.6, f_V^{\gamma}(a) = 0.6, f_V^{\gamma}(b) = 0.6, f_V^{\gamma}(a+b) = 0.6.$ Then U and V are γ -SVNSRs of R. Now $(U \cup V)^{\gamma} = = \{ \langle u, (i_U \vee i_V)^{\gamma})(u), (t_U \vee t_V)^{\gamma}(u), (f^{\gamma}_{U} \wedge f_V)^{\gamma}(u), (u) \rangle \mid u \in R \},\$ Here $(i_U \vee i_V)^\gamma(0) = 0.8$, $(i_U \vee i_V)^\gamma(a) = 0.5$, $(i_U \vee i_V)^\gamma(b) = 0.5$, $(i_U \vee i_V)^\gamma(a+b) = 0.4$; $(t_U \vee t_V)^{\gamma}(0) = 0.7, \ (t_U \vee t_V)^{\gamma}(a) = 0.3, \ (t_U \vee t_V)^{\gamma}(b) = 0.3, \ (t_U \vee t_V)^{\gamma}(a+b) = 0.2;$ $(f_U^{\gamma} \wedge f_V)^{\gamma}(0) = 0.1, (f_U^{\gamma} \wedge f_V)^{\gamma}(a) = 0.2, (f_U^{\gamma} \wedge f_V)^{\gamma}(b) = 0.2, (f_U^{\gamma} \wedge f_V)^{\gamma}(a+b) = 0.2.$ Now $(i_U \vee i_V)^\gamma (a+b) = 0.4 < \wedge \{((i_U^\gamma \vee i_V)^\gamma (a), (i_U \vee i_V)^\gamma)(b))\} = 0.5$

Therefore $(U \cup V)^\gamma$ is not an γ -SVNSR of R.

Definition 3.8. A $U^{\gamma} = (i_{l}^{\gamma})$ $U_U^{\gamma}, t_U^{\gamma}, f_U^{\gamma}$) of a ring R is said to be an γ -single valued neutrosophic normal subring γ -SV NNSR of R if

 (1) i_l^{γ} $\tilde{U}(uv) = i\tilde{U}$ $_U^{\gamma}(vu)$. (2) t_L^{γ} $U^{\gamma}(uv) = t_U^{\gamma}$ $_U^{\gamma}(vu).$ (3) f_{U}^{γ} $\hat{U}_U^{\gamma}(uv) = f_U^{\gamma}$ $U^{\gamma}(vu), \ \forall \ u, v \in R.$

Definition 3.9. A γ -single valued neutrosophic set $U^{\gamma} = (i_j^{\gamma})$ $U_U^{\gamma}, t_U^{\gamma}, f_U^{\gamma}$ a ring R is said to be an γ -single valued neutrosophic left ideal (γ -SVNLI) if

 (1) i_l^{γ} $U^{\gamma}(u-v) \geq \wedge \{i_U^{\gamma}\}$ $U^{\gamma}(u), i^{\gamma}_U(v)\}.$ (2) i_l^{γ} $U^{\gamma}(uv) \geq i_U^{\gamma}$ $_U^{\gamma}(v)$. (3) t_I^{γ} $U^{\gamma}(u-v) \geq \wedge \{t^{\gamma}_U\}$ $U^{\gamma}(u), t^{\gamma}_U(v)\}.$ (4) t_L^{γ} $U^{\gamma}(uv) \geq t_U^{\gamma}$ $_U^{\gamma}(v)$. (5) f_{U}^{γ} $U^{\gamma}(u-v) \leq \vee \{f_U^{\gamma}\}$ $U^{\gamma}(u), \ f^{\gamma}_U(v)\}.$ (6) f_{U}^{γ} $U_U^{\gamma}(uv) \leq f_U^{\gamma}$ $U^{\gamma}(v), \ \forall \ u, v \in R.$

Definition 3.10. A γ -single valued neutrosophic set $U^{\gamma} = (i_j^{\gamma})$ $U_U^{\gamma}, t_U^{\gamma}, f_U^{\gamma}$ a ring R is said to be an γ -single valued neutrosophic right ideal (γ -SV NRI) if

 (1) i_l^{γ} $U^{\gamma}(u-v) \geq \wedge \{i_U^{\gamma}\}$ $U^{\gamma}(u), i^{\gamma}_U(v)\}.$ (2) i_l^{γ} $U^{\gamma}(uv) \geq i_U^{\gamma}$ $_U^{\gamma}(u)$. (3) t_I^{γ} $U^{\gamma}(u-v) \geq \wedge \{t^{\gamma}_U\}$ $U^{\gamma}(u), t^{\gamma}_U(v)\}.$ (4) t_L^{γ} $U^{\gamma}(uv) \geq t_U^{\gamma}$ $_U^{\gamma}(u)$. (5) f_{U}^{γ} $U^{\gamma}(u-v) \leq \vee \{f_U^{\gamma}\}$ $U^{\gamma}(u), \ f^{\gamma}_U(v)\}.$ (6) f_{U}^{γ} $U_U^{\gamma}(uv) \leq f_U^{\gamma}$ $U^{\gamma}(u), \ \forall \ u, v \in R.$

Definition 3.11. A γ -single valued neutrosophic set $U^{\gamma} = (i_j^{\gamma})$ $U_U^{\gamma}, t_U^{\gamma}, f_U^{\gamma}$ a ring R is said to be an γ -single valued neutrosophic ideal (γ -SVNI) if

 (1) i_l^{γ} $U^{\gamma}(u-v) \geq \wedge \{i_U^{\gamma}\}$ $U^{\gamma}(u), i^{\gamma}_U(v)\}.$

 (2) t_L^{γ} $U^{\gamma}(u-v) \geq \wedge \{t^{\gamma}_U\}$ $U^{\gamma}(u), t^{\gamma}_U(v)\}.$ (3) f_{U}^{γ} $U^{\gamma}(u-v) \leq \vee \{f^{\gamma}_U\}$ $U^{\gamma}(u), \ f^{\gamma}_U(v)\}.$ (4) i_{I}^{γ} $U^{\gamma}(uv) \geq \vee \{i^{\gamma}_U\}$ $U^{\gamma}(u), i^{\gamma}_U(v)\}.$ (5) t_I^{γ} $U^{\gamma}_U(xv) \geq \vee \{t^{\gamma}_U\}$ $U^{\gamma}(u), t^{\gamma}_U(v)\}.$ (6) f_{U}^{γ} $U_U^{\gamma}(uv) \leq \wedge \{f_U^{\gamma}\}$ $U^{\gamma}(u), \ f^{\gamma}_U(v) \}, \ \forall \ u, v \in R.$

Example 3.12. Let us consider a ring $(Z_4, +4, \times_4)$ where $Z_4 = \{0, 1, 2, 3\}$ and Consider $U = \{ \langle i_U, t_U, f_U \rangle \mid u \in Z_4 \}$ be a single valued neutrosophic subset of Z_4 , where $i_U(0) = 0.4$, $i_U(1) = 0.3 = i_U(3)$, $i_U(2) = 0.5$. $t_U(0) = 0.3$, $t_U(1) = 0.2 = t_U(3)$, $t_U(2) = 0.6$. and $f_U(0) = 0.2$, $f_U(1) = 0.7 = f_U(3)$, $f_U(2) = 0.6$. Suppose $\gamma = 0.5$ then $U^{\gamma} = \{\langle i_l^{\gamma} \rangle\}$ $U_U^{\gamma}, t_U^{\gamma}, f_U^{\gamma} \rangle \mid u \in Z_4$ be an γ -single valued neutrosophic subset of Z_4 , where i^{γ} $U_U^{\gamma}(0) = 0.4, i_U^{\gamma}(1) = 0.3 = i_U^{\gamma}$ $U^{\gamma}(3), iU^{\gamma}(2) = 0.5.$ t_I^{γ} $U_U^{\gamma}(0) = 0.3, \ t_U^{\gamma}(1) = 0.2 = t_U^{\gamma}$ $U(U(3), tU(2)) = 0.5$. and f^{γ}_{IJ} $U'(0) = 0.5, f_U^{\gamma}(1) = 0.7 = f_U^{\gamma}$ $U'(3)$, $f_U^{\gamma}(2) = 0.6$.

 \Rightarrow U is an γ -SVNI of Z_4 .

Theorem 3.13. If
$$
U^{\gamma} = \{ \langle i_U^{\gamma}, t_U^{\gamma}, f_V^{\gamma} \rangle \mid u \in R \}
$$
 is a γ -SVNI of a ring R, then
\n $i_U^{\gamma}(0) \geq i_U^{\gamma}(u), t_U^{\gamma}(0) \geq t_U^{\gamma}(u), f_U^{\gamma}(0) \leq f_U^{\gamma}(u)$
\nand $i_U^{\gamma}(-u) = i_U^{\gamma}(u), t_U^{\gamma}(-u) = t_U^{\gamma}(u), f_U^{\gamma}(-u) = F_U^{\gamma}(u), \forall u \in R$.
\nProof. Let $i_U^{\gamma}(0) = i_U^{\gamma}(u - u) \geq \wedge \{i_U^{\gamma}(u), i_U^{\gamma}(u)\} = i_U^{\gamma}(u)$.
\n $t_U^{\gamma}(0) = t_U^{\gamma}(u - u) \geq \wedge \{t_U^{\gamma}(u), t_U^{\gamma}(u)\} = t_U^{\gamma}(u)$.
\nSimilarly $f_U^{\gamma}(0) = f_U^{\gamma}(u - u) \leq \vee \{f_U^{\gamma}(u), f_U^{\gamma}(u)\} = f_U^{\gamma}(u)$.
\nNext $i_U^{\gamma}(-x) = i_U^{\gamma}(0 - u) \geq \wedge \{i_U^{\gamma}(0), i_U^{\gamma}(u)\} = i_U^{\gamma}(u)$.
\nAlso $i_U^{\gamma}(u) = i_U^{\gamma}(0 - (-u)) \geq \wedge \{i_U^{\gamma}(0), i_U^{\gamma}(-u)\} = i_U^{\gamma}(-u)$.
\nTherefore $i_U^{\gamma}(-u) = i_U^{\gamma}(u)$.
\nSo $t_U^{\gamma}(-u) = t_U^{\gamma}(0 - u) \geq \wedge \{t_U^{\gamma}(0), t_U^{\gamma}(u)\} = t_U^{\gamma}(u)$.
\nAlso $t_U^{\gamma}(u) = t_U^{\gamma}(0 - (-u)) \geq \wedge \{t_U^{\gamma}(0), t_U^{\gamma}(-u)\} = t_U^{\gamma}(-u)$.
\nTherefore $t_U^{\gamma}(-u) = t_U^{\gamma}(0 - u) \leq \vee \{f_U^{\gamma}(0), f_U^{\gamma}(u)\} = f_U^{\gamma}(u)$.
\nAlso $f_U^{\gamma}(u) = f_U^{\gamma}(0 - (-u$

Remark 3.14. Every γ -SVNI of a ring R is an γ -SVNSR of R. However the converse is not true.

For example, let $(R, +, \cdot)$ be the ring of real numbers. Define, $U = \{ \langle u, i_U (u), t_U (u), i_U (u) \rangle \mid u \in R \}$ such that $i_U(u) = 0.5$ if u is rational, $t_U(u) = 0.8$ if u is rational, $f_U(u) = 0.1$ if u is rational. $i_U (u) = 0.4$ if u is irrational, $t_U (u) = 0.3$ if u is irrational, $f_U (u) = 0.7$ if u is irrational. Consider $\gamma = 0.6$, now define $U^{\gamma} = \{ \langle u, i_U^{\gamma}(u), t_U^{\gamma}(u), i_U^{\gamma}(u) \rangle | u \in R \}$ then i_l^{γ} $U_U^{\gamma}(u) = 0.5$ if u is rational, t_U^{γ} $U_U^{\gamma}(u) = 0.6$ if u is rational, f_U^{γ} $U(U(u) = 0.6$ if u is rational. i_l^{γ} $U_U^{\gamma}(u) = 0.4$ if u is irrational, t_U^{γ} $U_U^{\gamma}(u) = 0.3$ if u is irrational, f_U^{γ} $U(U(u) = 0.7$ if u is irrational.

Then U is an γ -SVNSR of R.

But U is not an γ -SVNI of R, since i_l^{γ} $U^{\gamma}(2\sqrt{2}) = 0.4 < \sqrt{\{i_U^{\gamma}\}}$ $\tilde{v}^{\gamma}(2), i_U^{\gamma}($ √ 2)}.

Theorem 3.15. Let U and V be two γ -SVNIs of a ring R. Then $U \cap V$ is also a γ -SVNI of R.

Proof. Let $U = \{ \langle u, i_U(u), t_U(u), f_U(u) \rangle \mid u \in R \}$ and $V = \{ \langle u, i_V(u), t_V(u), f_V(u) \rangle \mid u \in R \}$ be any two γ -SVNIs of a ring R. Then,

 $U^{\gamma} = \{ \langle u, i_{U}^{\gamma}(u), t_{U}^{\gamma}(u), f_{U}^{\gamma}(u) \rangle \mid u \in R \}$ and $V^{\gamma} = \{ \langle u, i_{V}^{\gamma}(u), t_{V}^{\gamma}(u), f_{V}^{\gamma}(u) \rangle \mid u \in R \}$, then by using Proposition [3.5](#page-5-0)

 $(U \cap V)^{\gamma} = U^{\gamma} \cap V^{\gamma} = \{ \langle u, (i_U^{\gamma} \wedge i_V^{\gamma}) \rangle \}$ $V_V^{\gamma}(u), (t_U^{\gamma} \wedge t_V^{\gamma})$ $V(Y)(u), (f_U^{\gamma} \vee f_V^{\gamma})$ $\langle \gamma \rangle(u) \rangle \mid u \in R$.

Now for any $u, v \in R$, we have

(i)
$$
(i_U^{\gamma} \wedge i_V^{\gamma})(u - v) = \wedge \{i_U^{\gamma}(u - v), i_V^{\gamma}(u - v)\}
$$

\n $\geq \wedge \{\wedge \{i_U^{\gamma}(u), i_U^{\gamma}(v)\}, \wedge \{i_V^{\gamma}(u), i_V^{\gamma}(v)\}\}$
\n $= \wedge \{\wedge \{i_U^{\gamma}(u), i_V^{\gamma}(u)\}, \wedge \{i_U^{\gamma}(v), i_U^{\gamma}(v)\}\}$
\n $= \wedge \{(i_U^{\gamma} \wedge i_V^{\gamma})(u), (i_U^{\gamma} \wedge i_V^{\gamma})(v)\}.$
\n(ii) $(i_U^{\gamma} \wedge i_V^{\gamma})(uv) = \wedge \{i_U^{\gamma}(uv), i_V^{\gamma}(xv)\}$
\n $\geq \wedge \{\vee \{i_U^{\gamma}(u), i_U^{\gamma}(v)\}, \vee \{i_V^{\gamma}(u), i_V^{\gamma}(v)\}\}$
\n $\geq \vee \{\wedge \{i_U^{\gamma}(u), i_V^{\gamma}(u)\}, \wedge \{i_U^{\gamma}(v), i_U^{\gamma}(v)\}\}$
\n $= \vee \{(i_U^{\gamma} \wedge i_V^{\gamma})(x), (i_U^{\gamma} \wedge i_V^{\gamma})(v)\}.$
\n(iii) $(t_U^{\gamma} \wedge t_V^{\gamma})(u - v) = \wedge \{t_U^{\gamma}(u - v), t_V^{\gamma}(u - v)\}$
\n $\geq \wedge \{\wedge \{t_U^{\gamma}(u), t_U^{\gamma}(v)\}, \wedge \{t_V^{\gamma}(u), t_V^{\gamma}(v)\}\}$
\n $= \wedge \{\wedge \{t_U^{\gamma}(u), t_V^{\gamma}(u)\}, \wedge \{t_U^{\gamma}(v), t_U^{\gamma}(v)\}\}$
\n $= \wedge \{\wedge \{t_U^{\gamma}(u), t_V^{\gamma}(u)\}, \wedge \{t_U^{\gamma}(u), t_V^{\gamma}(uv)\}\}$
\n $\geq \wedge \{\vee \{t_U^{\gamma}(u), t_V^{\gamma}(v)\}, \vee \{t_V^{\gamma}(u), t_V^{\gamma}(v)\}\}$
\n $\geq \vee \{\wedge \{t_U^{\gamma}(u), t_V^{\gamma}(u)\}, \wedge \$

 $= \vee \{ (f_U^{\gamma} \vee f_V^{\gamma})$ $(\hat{y})^{\gamma}(u),(\hat{f}_U^{\gamma} \vee \hat{f}_V^{\gamma})$ $(\gamma_V^{\gamma})(v)\}.$ (vi) $(f_U^{\gamma} \vee f_V^{\gamma})$ $V_V^{\gamma}(uv) = \vee \{f_U^{\gamma}$ $\hat{U}^{(\gamma)}(uv), f^{\gamma}_{V}(uv)\}$ \leq ∨ $\{\wedge\{f_{U}^{\gamma}\}\}$ $U^{\gamma}(u)$, $f^{\gamma}_U(v)$ }, $\wedge \{f^{\gamma}_V\}$ $\mathcal{F}_V^{\gamma}(u)$, $f_V^{\gamma}(v)$ }} $\leq \wedge \{\vee\{f_{U}^{\gamma}\}\}$ $U^{\gamma}(u)$, $f^{\gamma}_V(u)$ }, $\vee \{f^{\gamma}_U\}$ $U^{\gamma}(v), f^{\gamma}_U(v)\}$ $= \wedge \{ (f_U^{\gamma} \vee f_V^{\gamma})$ $(\hat{y})^{\gamma}(u), (f^{\gamma}_U \vee f^{\gamma}_V)$ $(\gamma_V^{\gamma})(v)\}.$ Therefore $U \cap V$ is an γ -SVNI of R. \Box

Remark 3.16. Union of two γ -SVNIs of R need not to be γ -SVNI of R.

Remark 3.17. If U is an γ -SVNSR and V is an γ -SVNI of a ring R then $U \cap V$ is an γ -SVNSR of R but not an γ -SVNI of R. For example, consider the ring $(R, +, \cdot)$ of real numbers and define,

 $U = \{ \langle u, i_U (u), t_U (u), f_U (u) \rangle \mid u \in R \}$ such that $i_U(u) = 0.7$ if u is rational, $t_U(u) = 0.6$ if u is rational, $f_U(u) = 0.1$ if u is rational. $i_U (u) = 0.2$ if u is irrational, $i_U (u) = 0.1$ if u is irrational, $f_U (u) = 0.8$ if u is irrational. Also define $V = \{ \langle u, i_V (u), t_V (u), f_V (u) \rangle | u \in R \}$ such that $i_V(u) = 0.5$, $t_V(u) = 0.4$ and $f_V(u) = 0.6 \forall u \in R$. Consider $\gamma = 0.5$ then i_l^{γ} $U_U^{\gamma}(u) = 0.5$ if u is rational, t_U^{γ} $U_U^{\gamma}(u) = 0.5$ if u is rational, f_U^{γ} $U(U(u) = 0.5$ if u is rational. i_l^{γ} $U_U^{\gamma}(u) = 0.2$ if u is irrational, i_U^{γ} $U_U^{\gamma}(u) = 0.1$ if u is irrational, f_U^{γ} $U(U(u) = 0.8$ if u is irrational. Then $U = \{ \langle u, i_U (u), t_U (u), f_U (u) \rangle \mid u \in R \}$ is an γ -SVNSR of R. Similarly, $i_{\mathbf{V}}^{\gamma}$ $V_V^{\gamma}(u) = 0.5, t_V^{\gamma}$ $\gamma_V^{\gamma}(u) = 0.4$ and i_V^{γ} $V_V^{\gamma}(u) = 0.6 \forall u \in R.$ Then $V = \{ \langle u, i_V(u), t_V(u), f_V(u) \rangle | u \in R \}$ is an γ -SVNI of R. Then by using Proposition [3.5](#page-5-0) $(U \cap V)^{\gamma} = U^{\gamma} \cap V^{\gamma} = \{ \langle u, (i_U^{\gamma} \wedge i_V^{\gamma}) \rangle \}$ $V_V^{\gamma}(u), (t_U^{\gamma} \wedge t_V^{\gamma})$ $V(Y)(u), (f_U^{\gamma} \vee f_V^{\gamma})$ $\langle V_V^{\gamma}(u) \rangle \mid u \in R$ } is not an γ -SVNI of R, because $(i_U^{\gamma} \wedge i_V^{\gamma})$ $(\sqrt{\nu}, \sqrt{\nu}) \times \sqrt{(i_U^{\gamma} \wedge i_V^{\gamma})^2}$ $V(Y)(2),$ $(i_U^{\gamma} \wedge i_V^{\gamma})$ $(\sqrt{2})\}$.

4. Sum and Product of γ -Single Valued Neutrosophic Ideal (γ -SVNI)

In this section, we elaborate some fundamental principles and results related to the sum and product of the γ -single valued neutrosophic ideal.

Definition 4.1. Let U and V be two γ -SVNIs of a ring R then their sum $(U+V)^{\gamma}$ is defined as $(U + V)^{\gamma} = \{ \langle u, (i_U^{\gamma} + i_V^{\gamma}) \rangle \}$ $V(Y)(u), (t_U^{\gamma} + t_V^{\gamma})$ $V_V^{\gamma}(u)$, $(f_U^{\gamma} + f_V^{\gamma})$ $\langle V'(u) \rangle \mid u \in R$, where $(i_U^{\gamma} + i_V^{\gamma})$ $V_V^{\gamma}(u) = \sup$ $u=a+b$ $\{\wedge \}$ ⁷ $U^{\gamma}(a), i^{\gamma}_U(b)\},$ $(t_U^{\gamma} + t_V^{\gamma})$ $V_V^{\gamma}(u) = \sup$ $u=a+b$ $\{\wedge \}t_L^{\gamma}$ $U^{\gamma}(a), t^{\gamma}(b)\},$ and $(f_U^{\gamma} + f_V^{\gamma})$ $V(Y)(u) = \inf_{u=a+b} \{ \vee \{ f_U^{\gamma} \}$ $U^{\gamma}(a)$, $f^{\gamma}_U(b)$ }.

Definition 4.2. Let U and V be two γ -SVNIs of a ring R then their product $(UV)^{\gamma}$ is defined as $(UV)^{\gamma} = \{ \langle u, (i) \rangle \}$ \tilde{u}^{γ}_{l} $V_V^{\gamma}(u), (t_U^{\gamma})$ $\tilde{u}^{\gamma}_{U}t^{\gamma}_{V}$ $V_V^{\gamma}(u)$, (f_U^{γ}) $\tilde{U}^{\gamma} f^{\gamma}_{V}$ $\langle \gamma \rangle(u) \rangle \mid u \in R$, where

$$
(i_U^{\gamma} i_V^{\gamma})(u) = \sup_{\substack{u = \sum a_i b_i \\ i < \infty}} {\{\wedge \{\wedge \{i_U^{\gamma}(a_i), i_U^{\gamma}(b_i)\}\}\}},
$$

$$
(t_U^{\gamma} t_V^{\gamma})(u) = \sup_{\substack{u = \sum a_i b_i \\ i < \infty}} {\{\wedge \{\wedge \{t_U^{\gamma}(a_i), t_U^{\gamma}(b_i)\}\}\}},
$$
and
$$
(f_U^{\gamma} f_V^{\gamma})(u) = \inf_{\substack{u = \sum a_i b_i \\ i < \infty}} {\{\vee \{\vee \{f_U^{\gamma}(a_i), f_U^{\gamma}(b_i)\}\}\}}.
$$

Theorem 4.3. If U and V are two γ -SVNIs of a ring R, then $U + V$ is also an γ -SVNI of R.

Proof. Let
$$
U = \{(u, i_U(u), t_U(u), f_U(u)) | u \in R\}
$$
 and $V = \{(u, i_V(u), t_V(u), f_V(u), f_V(u) | u \in R\}$
be two γ -SVNIs of a ring R, so $U^{\gamma} = \{(u, i_V^{\gamma}(u), t_V^{\gamma}(u), f_V^{\gamma}(u)) | u \in R\}$ and
 $V^{\gamma} = \{(u, i_V^{\gamma}(u), t_V^{\gamma}(u), f_V^{\gamma}(u) | u \in R\}$, then their sum $(U + V)^{\gamma}$ is given by
 $(U + V)^{\gamma} = \{(u, (i_U^{\gamma} + i_V^{\gamma})(u), (i_U^{\gamma} + t_V^{\gamma})(u), (j_U^{\gamma} + f_V^{\gamma})(u)) | u \in R\}$.
Let $u, v \in R$ and let $\wedge \{(i_U^{\gamma} i_V^{\gamma})(u), (i_U^{\gamma} i_V^{\gamma})(v) \} = l$. Then for any $\epsilon > 0$,
 $l - \epsilon < (i_U^{\gamma} + i_V^{\gamma})(u) = \sup_{u \in a+b} \{\wedge \{i_U^{\gamma}(a), i_U^{\gamma}(b)\}\}$.
So there exist representations $u = a + b, v = c + d$, where $a, b, c, d \in R$ such that
 $l - \epsilon < \wedge \{i_U^{\gamma}(a), i_V^{\gamma}(b) \}$ and $l - \epsilon < \wedge \{i_U^{\gamma}(c), i_U^{\gamma}(d)\}\$.
So there exist representations $u = a + b, v = c + d$, where $a, b, c, d \in R$ such that
 $l - \epsilon < \wedge \{i_U^{\gamma}(a), i_V^{\gamma}(b) \}$ and $l - \epsilon < \wedge \{i_U^{\gamma}(c), i_U^{\gamma}(d)\}\$.
 $\Rightarrow l - \epsilon < \wedge \{i_U^{\gamma}(a), i_V^{\gamma}(b) \} \leq i_U^{\gamma}(a + c)$ and $l - \epsilon < \wedge \{i_V^{\gamma}(b), i_V^{\gamma}(d) \} \leq i_V^{\gamma}(b + d)$.
Thus we get $u + v = (a + b) + (c + d) = (a + c) + (b + d)$ such that
<

 $(i_U^{\gamma} + i_V^{\gamma})$ $V_V^{\gamma}(uv) \geq m = \vee \{ (i_U^{\gamma} + i_V^{\gamma})$ $V(Y)(u), (i_U^{\gamma} + i_V^{\gamma})$ $V^{\gamma}(v)\}.$ Similarly we can show that $(t_U^{\gamma} + t_V^{\gamma})$ $V_V^{\gamma}(uv) \geq s = \vee \{ (t_U^{\gamma} + t_V^{\gamma})$ $V(Y)(u), (t_U^{\gamma} + t_V^{\gamma})$ $V^{\gamma}(v)\}.$ Next let $\vee \{ (f_U^{\gamma} + f_V^{\gamma})$ $(y^{\gamma}_{V})(u), (f^{\gamma}_{U}+f^{\gamma}_{V})$ $\mathcal{V}(v) = n$ and $\epsilon > 0$. Then $n + \epsilon > (f_U^{\gamma} + f_V^{\gamma})$ $V_V^{\gamma}(u) = \inf_{u=a+b} \{ \vee \{ f_U^{\gamma}$ $U^{\gamma}(a)$, $f^{\gamma}_U(b) \},$ and $n + \epsilon > (f_U^{\gamma} + f_V^{\gamma})$ $\hat{U}_V(\mathbf{v}) = \inf_{v=c+d} \{ \forall \{f_U^{\gamma}\}$ $U^{\gamma}(c), f^{\gamma}_U(d)\}$. So, there exist representations $u = a + b$ and $v = c + d$, for some $a, b, c, d \in R$ such that $n + \epsilon > \sqrt{f_{U}^{\gamma}}$ $U^{\gamma}(a)$, $f^{\gamma}_V(b)$ } and $n + \epsilon > \sqrt{\frac{f^{\gamma}_U}{f^{\gamma}_U}}$ $U^{\gamma}(c)$, $f^{\gamma}_V(d)$. $\Rightarrow n + \epsilon > f^{\gamma}_U(a), f^{\gamma}_V(b) \text{ and } n + \epsilon > f^{\gamma}_U(c), f^{\gamma}_V(d).$ \Rightarrow $n + \epsilon$ > \vee { f_{U}^{γ} $f_U^{\gamma}(a), f_U^{\gamma}(c)\} = f_U^{\gamma}$ $U'(a+c)$, and $n+\epsilon > \sqrt{\frac{f}{U}}$ $f_U^{\gamma}(b), f_U^{\gamma}(d) \} \ge f_U^{\gamma}$ $U^{\gamma}(b+d).$ Thus we get, $u + v = (a + b) + (c + d) = (a + c) + (b + d)$, such that $n + \epsilon > \sqrt{f_{U}^{\gamma}}$ $U^{\gamma}(a+c), f^{\gamma}_V(b+d)\}.$ $\Rightarrow n+\epsilon < \inf_{u+v=(a+c)+(b+d)} \{\vee \{f_U^{\gamma}\}$ $U_U^{\gamma}(a+c), f_V^{\gamma}(b+d) \} = (f_U^{\gamma} + f_V^{\gamma})$ $(\gamma_V)(u+v).$ Since ϵ is arbitrary $(f_U^{\gamma} + f_V^{\gamma})$ $V(Y)(u + v) \leq n = \vee \{ (f_U^{\gamma} + f_V^{\gamma})\}$ $(f_V^{\gamma})(u), (f_U^{\gamma}+f_V^{\gamma})$ $(\gamma_V^{\gamma})(v)\}.$ Finally, if $w = \wedge \{ (f_U^{\gamma} + f_V^{\gamma})$ $(y^{\gamma}_{V})(u), (f^{\gamma}_{U}+f^{\gamma}_{V})$ $\begin{aligned} \mathcal{C}(V) &\to (f_U^{\gamma} + f_V^{\gamma}) \end{aligned}$ $(\gamma)(u)$ (say), and $\epsilon > 0$, then $w + \epsilon > (f_U^{\gamma} + f_V^{\gamma})$ $\hat{U}_V(\mathbf{u}) = \inf_{u=a+b} \{ \vee f_U^{\gamma}$ $U^{\gamma}(a)$, $f^{\gamma}_U(b)$. So there exists a representation $u = a + b$ such that $w + \epsilon > \sqrt{f_n^2}$ $U^{\gamma}(a)$, $f^{\gamma}_V(b)$. \Rightarrow $w + \epsilon$ > $f^{\gamma}_U(a)$ and $w + \epsilon$ > $f^{\gamma}_V(b)$. \Rightarrow $w + \epsilon$ > \wedge { f_{U}^{γ} $U^{\gamma}(a)$, $f^{\gamma}_U(c+d)$ } = f^{γ}_U $U'(a(c+d))$, and $w + \epsilon > \wedge \{f_V^{\gamma}$ $f_V^{\gamma}(b), f_V^{\gamma}(c+d) \} = f_V^{\gamma}$ $V(V(b(c+d)),$ where $v = c + d$. So, we get $uv = (a + b)(c + d) = a(c + d) + b(c + d)$ such that $w + \epsilon > \sqrt{f_{U}^{\gamma}}$ $U'(a(c+d)), f_V^{\gamma}(b(c+d))\}.$ \Rightarrow w + ϵ > $\inf_{uv=a(c+d)+b(c+d)}$ { $\vee(f_U^{\gamma})$ $U_U^{\gamma}(a(c+d)), f_V^{\gamma}(b(c+d)))\} = (f_U^{\gamma} + f_V^{\gamma})$ $\binom{\gamma}{V}(uv).$ Since ϵ is arbitrary, $(f_U^{\gamma} + f_V^{\gamma})$ $V(Y)(uv) \leq w = \wedge \{ (f_U^{\gamma} + f_V^{\gamma})\}$ $(y^{\gamma}_{V})(u), (f^{\gamma}_{U}+f^{\gamma}_{V})$ $\binom{\gamma}{V}(v)\}.$ Hence $U + V$ is an γ -SVNI of R. \Box

Theorem 4.4. If U and V are two γ -SVNIs of a ring R, then UV is also an γ -SVNI of R.

Proof. Let $U = \{ \langle u, i_U(u), t_U(u), f_U(u) \rangle \mid u \in R \}$ and $V = \{ \langle u, i_V(u), t_V(u), f_V(u) \mid u \in R \rangle \}$ be two γ -SVNIs of a ring R, so $U^{\gamma} = \{ \langle u, i_{U}^{\gamma}(u), t_{U}^{\gamma}(u), f_{U}^{\gamma}(u) \rangle \mid u \in R \}$ and $V^{\gamma} = \{ \langle u, i_{V}^{\gamma}(u), t_{V}^{\gamma}(u), f_{V}^{\gamma}(u) \mid u \in R \rangle \}.$ Then $(UV)^{\gamma} = \{ \langle u, (i) \rangle \}$ \tilde{u}^{γ}_{l} $V_V^{\gamma}(u), (t_U^{\gamma})$ $\tilde{v}^{\gamma}_{U}t^{\gamma}_{V}$ $V_V^{\gamma}(u)$, (f_U^{γ}) \tilde{U} f \tilde{V} $\langle \gamma \rangle(u) \rangle \mid u \in R$. Let $u, v \in R$ and let $\wedge \{i\}_{k=1}^{\infty}$ \tilde{u}^{γ}_{l} $V_V^{\gamma}(u), (i_U^{\gamma})$ \tilde{u}^{γ}_{l} $V_V^{\gamma}(v)\} = \varsigma.$ Then for any $\epsilon > 0$,

$$
\varsigma - \epsilon < (i_U^{\gamma} i_V^{\gamma})(u) = \sup_{u = \sum a_i b_i} \{ \wedge \{ \wedge \{i_U^{\gamma}(a_i), i_U^{\gamma}(b_i) \} \} \}, \text{ and}
$$
\n
$$
\varsigma - \epsilon < (i_U^{\gamma} i_V^{\gamma})(v) = \sup_{u = \sum m_i n_i} \{ \wedge \{ \wedge \{i_U^{\gamma}(m_i), i_U^{\gamma}(n_i) \} \} \}.
$$
\nSo we get representations $u = \sum_{i < \infty}^{a_i b_i} \text{ and } v = \sum_{i < \infty}^{m_i n_i} \text{ such that}$ \n
$$
\varsigma - \epsilon < \{ \wedge \{ \wedge \{i_U^{\gamma}(a_i), i_U^{\gamma}(b_i) \} \} \}, \text{ and } \varsigma - \epsilon < \{ \wedge \{ \wedge \{i_U^{\gamma}(m_i), i_U^{\gamma}(n_i) \} \} \},
$$
\n
$$
\Rightarrow \varsigma - \epsilon < \wedge \{ i_U^{\gamma}(a_i), i_U^{\gamma}(b_i) \}, \text{ and } \varsigma - \epsilon < \wedge \{ i_U^{\gamma}(m_i), i_U^{\gamma}(n_i) \} \forall i,
$$
\n
$$
\Rightarrow \varsigma - \epsilon < i_U^{\gamma}(a_i), i_U^{\gamma}(b_i), \text{ and } \varsigma - \epsilon < i_U^{\gamma}(m_i), i_U^{\gamma}(n_i) \forall i,
$$
\n
$$
\Rightarrow \varsigma - \epsilon < \wedge \{ i_U^{\gamma}(a_i), i_U^{\gamma}(b_i) \} \leq i_U^{\gamma}(a_i + m_i), \text{ and } \varsigma - \epsilon < \wedge \{ i_U^{\gamma}(m_i), i_U^{\gamma}(n_i) \} \leq i_V^{\gamma}(b_i + n_i) \forall i.
$$
\nThus, we get $u + v = \sum_{i < \infty} (a_i b_i + m_i n_i), \text{ where } a_i, b_i, m_i, n_i \in R$, such that\n
$$
\varsigma - \epsilon < \{ \wedge \{ i_U^{\gamma}(a_i + m_i), i_V^{\gamma}(b_i + n_i) \} \}, \forall i,
$$
\n
$$
\Rightarrow \varsigma - \epsilon < \{ \wedge \{ i_U^{\gamma}(a_i + m_i), i_V^{\gamma}(b_i
$$

$$
(i_U^{\gamma} i_V^{\gamma})(u+v) \ge \varsigma = \wedge \{ (i_U^{\gamma} i_V^{\gamma})(u), (i_U^{\gamma} i_V^{\gamma})(v) \}.
$$

Next let $g = \vee \{ (i_U^{\gamma} i_V^{\gamma})(u), (i_U^{\gamma} i_V^{\gamma})(v) \} = (i_U^{\gamma} i_V^{\gamma})(u)$ (say) and let $\epsilon > 0$, then

$$
g - \epsilon < (i_U^{\gamma} i_V^{\gamma})(u) = \sup_{\substack{u = \sum a_i b_i \ i \\ i < \infty}} \{ \wedge \{ \wedge \{ i_U^{\gamma}(a_i), \{ i_V^{\gamma} b_i \} \} \}.
$$

So there exists a representation $u = \sum$ $a_i b_i$ such that

$$
g - \epsilon < \bigwedge_{i} \{\wedge \{i_{U}^{\gamma}(a_{i}), \{i_{V}^{\gamma}b_{i}\}\} \Rightarrow \wedge \{i_{U}^{\gamma}(a_{i}), \{i_{V}^{\gamma}b_{i}\}, \forall i.
$$
\n
$$
\Rightarrow g - \epsilon < i_{U}^{\gamma}(a_{i}), i_{V}^{\gamma}(b_{i}), \forall i.
$$
\nIf $v = \sum_{i < \infty} m_{i}n_{i}$ then\n
$$
g - \epsilon < \sqrt{\{i_{U}^{\gamma}(a_{i}), i_{U}^{\gamma}(m_{i})\}} = i_{U}^{\gamma}(a_{i}m_{i}) \forall i,
$$
\nand $g - \epsilon < \sqrt{\{i_{V}^{\gamma}(b_{i}), i_{V}^{\gamma}(n_{i})\}} = i_{V}^{\gamma}(b_{i}n_{i}), \forall i.$ \nThus, we get $uv = \sum_{i < \infty} (a_{i}b_{i})(m_{i}n_{i}) = \sum_{i < \infty} (a_{i}m_{i})(b_{i}n_{i})$ \nsuch that $g - \epsilon < \wedge \{i_{U}^{\gamma}(a_{i}m_{i}), i_{V}^{\gamma}(b_{i}n_{i})\}, \forall i.$ \n
$$
\Rightarrow g - \epsilon < \bigwedge_{i} \{\wedge \{i_{U}^{\gamma}(a_{i}m_{i}), i_{V}^{\gamma}(b_{i}n_{i})\}\}.
$$
\n
$$
\Rightarrow g - \epsilon < \sup_{uv = \sum_{i < \infty} (a_{i}m_{i})(b_{i}n_{i})} \{\wedge \{i_{U}^{\gamma}(a_{i}m_{i}), i_{V}^{\gamma}(b_{i}n_{i})\}\} = (i_{U}^{\gamma}i_{V}^{\gamma})(uv).
$$
\n
$$
\Rightarrow \text{if } \forall u \in \mathcal{U} \text{ and } \forall u \in \mathcal{U}
$$

Since ϵ is arbitrary

 (i_l^{γ}) \tilde{u}^{γ}_{l} $V_V^{\gamma}(uv) \ge g = \vee \{ (i_U^{\gamma})\}$ \tilde{u}^{γ}_{l} $V_V^{\gamma}(u), (i_U^{\gamma})$ \tilde{u}^{γ}_{l} $V^{\gamma}(v)\}.$ Similarly, we can show that (t) ^{γ} \tilde{U}^t $V_V^{\gamma}(u+v) \geq j = \wedge \{ (t_U^{\gamma})\}$ \tilde{U}^t $V_V^{\gamma}(u), (t_U^{\gamma})$ \tilde{u}^{γ}_{l} $V^{\gamma}_{V})(v)\}.$ (t) ^{γ} $\tilde{u}^{\gamma}_{U}t^{\gamma}_{V}$ $V_V^{\gamma}(uv) \ge \delta = \vee \{(t_U^{\gamma})\}$ $\tilde{u}^{\gamma}_{U}t^{\gamma}_{V}$ $V_V^{\gamma}(u), (t_U^{\gamma})$ $\tilde{u}^{\gamma}_{U}t^{\gamma}_{V}$ $V^{\gamma}(v)\}.$ Next, let $l = \vee \{ (f_{ll}^{\gamma})\}$ $\tilde{U}^{\gamma} f^{\gamma}_V$ $\hat{U}_V^{\gamma}(u), (f_U^{\gamma})$ \tilde{U} f \tilde{V} $\{\gamma_V^{\gamma}(v)\}\$ and $\epsilon > 0$, then

⇒
$$
l + \epsilon > (f_U^T f_V^T)(u) = \inf_{\substack{u \to \infty \\ u \to \infty \\ u \to u}} \{ \nabla \{ \nabla \{ \nabla \} \nabla \} \nabla \{ \nabla \{ \nabla \} \nabla \} \nabla \{ \nabla \{ \nabla \} \} \nabla \{ \nabla \{ \nabla \} \{ \nabla \{ \nabla \} \{ \nabla \} \{ \nabla \} \} \} \}.
$$
\nSo, we get representations $u = \sum_{u \in \infty} a_i b_i$ and $v = \sum_{v \in \infty} m_i n_i$, where $a_i, b_i, m_i, n_i \in R$, such that $l + \epsilon > \nabla \{ f_U^T(u_i), f_V^T(b_i) \}$ and $l + \epsilon > \nabla \{ f_U^T(u_i), f_V^T(v_i) \}$. $\nabla l + \epsilon > \nabla \{ f_U^T(u_i), f_V^T(b_i) \}$ and $l + \epsilon > \nabla \{ f_U^T(u_i), f_V^T(v_i) \}$. $\nabla l + \epsilon > \nabla \{ f_U^T(u_i), f_V^T(b_i) \}$ and $l + \epsilon > \nabla \{ f_U^T(u_i), f_V^T(v_i) \}$. $\nabla l + \epsilon > \nabla \{ f_U^T(u_i), f_V^T(b_i) \} \nabla \{ \nabla \{ \nabla \} \{ \nabla \} \} \nabla \{ \nabla \{ \nabla \{ \nabla \{$

Remark 4.5. According to the definition given by Atanassov [\[1\]](#page-16-0) the sum and product of two γ -SVNIs of a ring R is not necessarily an γ -SVNI of R as shown by the following example: Consider the ring $R = \{0, a, b, a + b\}$ where $a + a = 0 = b + b, a + b = b + a$ and $uv = 0$

 $\forall u, v \in R$. We define, i_I^{γ} $U_U^{\gamma}(0) = 0.9 = i_U^{\gamma}$ $U^{\gamma}(a), i^{\gamma}_U(b) = 0.4 = i^{\gamma}_U$ $U^{\gamma}(a+b);$ t_I^{γ} $U_U^{\gamma}(0) = 0.9 = t_U^{\gamma}$ $U^{\gamma}(a), t^{\gamma}(b) = 0.4 = t^{\gamma}_U$ $U^{\gamma}(a+b);$ f^{γ}_{IJ} $f_U^{\gamma}(0) = 0.1 = f_U^{\gamma}$ $f^{\gamma}_U(a)$, $f^{\gamma}_U(b) = 0.4 = f^{\gamma}_U$ $U^{\gamma}(a+b).$ And i_V^{γ} $V_V^{\gamma}(0) = 0.7, i_V^{\gamma}(a) = 0.3 = i_V^{\gamma}$ $V_V^{\gamma}(a+b), i_V^{\gamma}(b) = 0.5;$ $i\hat{\chi}$ $V_V^{\gamma}(0) = 0.7, i_V^{\gamma}(a) = 0.3 = i_V^{\gamma}$ $V_V^{\gamma}(a+b), i_V^{\gamma}(b) = 0.5;$ f_V^{γ} $V_V^{\gamma}(0) = 0.2, f_V^{\gamma}(a) = 0.6 = f_V^{\gamma}$ $V_V^{\gamma}(a+b), f_V^{\gamma}(b) = 0.5.$ Then $U = \{ \langle u, i_U (u), t_U (u), f_U (u) \rangle \mid u \in R \}$ and $V = \{ \langle u, i_V (u), t_V (u), f_V (u) \rangle \mid u \in R \}$ are γ -SVNIs of R. According to Atanassov [\[1\]](#page-16-0), $(U+V)^{\gamma} = \{\langle u, i_U^{\gamma}(u) + i_V^{\gamma}\rangle\}$ $\gamma_V^{\gamma}(u) - i_U^{\gamma}$ $\tilde{U}^{(u)i}$ $\gamma_V^{\gamma}(u), t_U^{\gamma}(u) + t_V^{\gamma}$ $\gamma_V^{\gamma}(u) - t_U^{\gamma}$ $\tilde{U}^{U}(u) t_{V}^{\gamma}$ $\tilde{V}_V(u)$, $f_U^{\gamma}(u) f_U^{\gamma}$ $U(U(u)) \mid u \in R$. And $(UV)^{\gamma} = \{ \langle u, i_U^{\gamma}(u)i_V^{\gamma} \rangle \}$ $\gamma_V^{\gamma}(u), t_U^{\gamma}(u)t_U^{\gamma}$ $U^{\gamma}(u)$, $f^{\gamma}_U(u) + f^{\gamma}_V$ $\hat{y}_V^{\gamma}(u) - f_U^{\gamma}$ $\hat{U}^{(\gamma)}(u) f_U^{\gamma}$ $U(U(u) \mid uinR$. Now i_l^{γ} $\tilde{U}(a-b)+i\tilde{V}$ $\gamma_V(a-b) - i_U^{\gamma}$ $\tilde{U}(a-b)i\tilde{V}$ $V_V^{\gamma}(a - b) = 0.4 + 0.3 - 0.12 = 0.58,$ i_I^{γ} $\tilde{U}^{\gamma}(a) + i\tilde{V}^{\gamma}$ $\gamma_V(a) - i_L^{\gamma}$ $\tilde{U}^{(a)i}$ $V_V^{\gamma}(a) = 0.9 + 0.3 - 0.27 = 0.93,$ and i_l^{γ} $\tilde{v}_U(b) + iV$ $\gamma_V^{\gamma}(b) - i_U^{\gamma}$ $\tilde{U}^{\gamma}(b)i_{V}^{\gamma}$ $V_V^{\gamma}(b) = 0.4 + 0.5 - 0.2 = 0.7.$ Therefore,

 i_l^{γ} $\tilde{U}(a-b)+i\tilde{V}$ $\gamma_V(a-b) - i_U^{\gamma}$ $\tilde{U}^{(a-b)i}$ $\gamma_V(a-b) < \wedge \{i_U^{\gamma}$ $\tilde{U}^{(a)+i\gamma}_{U}$ $\gamma_V(a) - i_L^{\gamma}$ $\tilde{U}^{(a)i}$ $\gamma_V(a), i_U^{\gamma}(b)+i_V^{\gamma}$ $\gamma_V(b) - i\gamma_U$ $\tilde{u}^{\gamma}(b)i\tilde{v}$ $_V^{\gamma}(b)$. Hence $U + V$ is not an γ -SVNI of R. Again for the product, we see that

$$
f_U^{\gamma}(a - b) + f_V^{\gamma}(a - b) - f_U^{\gamma}(a - b)f_V^{\gamma}(a - b) = 0.76,
$$

$$
f_U^{\gamma}(a) + f_V^{\gamma}(a) - f_U^{\gamma}(a)f_V^{\gamma}(a) = 0.64,
$$

and
$$
f_U^{\gamma}(b) + f_V^{\gamma}(b) - f_U^{\gamma}(b)f_V^{\gamma}(b) = 0.7.
$$

Therefore

$$
f_U^{\gamma}(a-b)+f_V^{\gamma}(a-b)-f_U^{\gamma}(a-b)f_V^{\gamma}(a-b) > \sqrt{f_U^{\gamma}(a)}+f_V^{\gamma}(a)-f_U^{\gamma}(a)f_V^{\gamma}(a), f_U^{\gamma}(b)+f_V^{\gamma}(b)-f_U^{\gamma}(b)f_V^{\gamma}(b)\}.
$$

Hence *UV* is not an γ -*SVNI* of *R*.

5. Conclusions

A γ-single valued neutrosophic set is a type of SVNS that can be used to tackle real-world challenges for research and engineering. In this work, we introduce the notion of γ -single valued neutrosophic subrings, γ -single valued neutrosophic ideals also the sum and product of γ -single valued neutrosophic ideals. On γ-single valued neutrosophic subrings and ideals, a variety of characterizations have been proposed. Therefore, it is important for researchers to examine γ -single valued neutrosophic subrings and ideals and their characteristics in applications and to understand the basics of uncertainty. We agreed to include the concept of a γ -SVNSR & γ -SVNI in research also examine its key feature. As a consequence of this research, various principles are to be applied to achieve some adequate research value results of γ -SVNSR &

 γ -SVNI. In further work, researchers can extend this idea in topological spaces, modules, and fields.

References

- 1. Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87-96.
- 2. Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy sets and Systems, 61(2), 137-142.
- 3. Atanassov, K.T. (1999). Intuitionistic Fuzzy Sets Theory and Applications, Studies on Fuzziness and Soft Computing, 35, Physica Verlag, Heidelberg.
- 4. Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1-141). American Research Press.
- 5. Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite study.
- 6. Banerjee, B. (2003). Intuitionistic fuzzy subrings and ideals. J. Fuzzy Math., 11(1), 139-155.
- 7. Basnet, D. K. (2011). Topic in intuitionistic fuzzy algebra, Lambert Academic Publishing,ISBN : 978-3- 8443-9147-3.
- 8. Biswas, R. (1989). Intuitionistic fuzzy subgroup, Mathematical Forum X, 37-46.
- 9. Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam mathematical journal, 25(1), 19-41.
- 10. Massadeh, M. O. (2012). The M-Homomorphism and M-Anti-Homomorphism on M-Fuzzy Subrings over M-Rings. Adavnces in Theoretical and Applied Mathematics, 7(4), 337-343.
- 11. Meena, K. & Thomas, K. V.(2011). Intuitionistic L-fuzzy Subrings, International Mathematical Forum, 6, 2561- 2572.
- 12. Meena, K. & Thomas, K. V. (2012). Intuitionistic L-Fuzzy Rings, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12, 16-31.
- 13. Sharma, P. K. (2012). t-Intuitionistic Fuzzy Quotient Ring, International Journal of Fuzzy Mathematics and Systems, 2, 207- 216.
- 14. Sun, S., & Liu, C. (2016). (λ , μ)-fuzzy Subrings and (λ , μ)-fuzzy Quotient Subrings with Operators. International Journal of Mathematical and Computational Sciences, 10(8), 413-416.
- 15. Sun, S., & Gu, W. (2005). Fuzzy subrings with operators and Fuzzy ideals with operators. Fuzzy Sets and Systems, 19(2).
- 16. Jun, Y. B., ztrk, M. A., & Park, C. H. (2007). Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings. Information Sciences, 177(21), 4662-4677.
- 17. Rosenfeld, A. (1971). Fuzzy groups, Journal of Mathematical Analysis and Applications, vol. 35, pp. 512- 517.
- 18. Arockiarani, I., & Jency, J. M. (2014). More on fuzzy neutrosophic sets and fuzzy neutrosophic topological spaces. International journal of innovative research and studies, 3(5), 643-652.
- 19. Banerjee, B. (2003). Intuitionistic fuzzy subrings and ideals. J. Fuzzy Math., 11(1), 139-155.
- 20. Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam mathematical journal, 25(1), 19-41.
- 21. Smarandache, F. (2005). Neutrosophic set-a generalization of the intuitionistic fuzzy set. International journal of pure and applied mathematics, 24(3), 287.
- 22. Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1-141). American Research Press.
- M.S. Hameed, Z. Ahmad, S. Ali, Characterization of γ -Single Valued Neutrosophic Rings and Ideals
- 23. Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite study.
- 24. Akinleye, S. A., Smarandache, F., & Agboola, A. A. A. (2016). On neutrosophic quadruple algebraic structures. Neutrosophic Sets and Systems, 12(1), 16.
- 25. Smarandache, F. (2015). (T, I, F)-Neutrosophic Structures. In Applied Mechanics and Materials (Vol. 811, pp. 104-109). Trans Tech Publications Ltd.
- 26. Gulzar, M., Abbas, G., & Dilawar, F. (2020). Algebraic Properties of ω-Q-fuzzy subgroups. International journal of Mathematics and Computer Science, 15(1), 265-274.
- 27. Gulzar, M., Alghazzawi, D., Mateen, M. H., & Premkumar, M. (2020). On some characterization of Qcomplex fuzzy sub-rings. J. Math. Comput. Sci., 22(03), 295-305.
- 28. Gulzar, M., Alghazzawi, F. D. D., & Mateen, M. H. (2021). A note on complex fuzzy subfield. Indonesian Journal of Electrical Engineering and Computer Science, 21(2), 1048-1056.
- 29. Hameed, M. S., Mukhtar, S., Khan, H. N., Ali, S., Mateen, M. H., & Gulzar, M. (2021). Pythagorean fuzzy N-Soft groups. Int. J. Electr. Comput. Eng, 21, 1030-1038.
- 30. Gulistan, M., Ali, M., Azhar, M., Rho, S., & Kadry, S. (2019). Novel neutrosophic cubic graphs structures with application in decision making problems. IEEE access, 7, 94757-94778.
- 31. Gulistan, M., Yaqoob, N., Elmoasry, A., & Alebraheem, J. (2021). Complex bipolar fuzzy sets: an application in a transports company. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-17.
- 32. Gulistan, M., & Khan, S. (2019). Extentions of neutrosophic cubic sets via complex fuzzy sets with application. Complex & Intelligent Systems, 1-12.
- 33. Gulistan, M., Yaqoob, N., Nawaz, S., & Azhar, M. (2019). A study of (α, β) -complex fuzzy hyperideals in non-associative hyperrings. Journal of Intelligent & Fuzzy Systems, 36(6), 6025-6036.
- 34. Gulistan, M., Nawaz, S., & Hassan, N. (2018). Neutrosophic triplet non-associative semihypergroups with application. Symmetry, 10(11), 613.
- 35. Gulistan, M., Yaqoob, N., Vougiouklis, T., & Abdul Wahab, H. (2018). Extensions of cubic ideals in weak left almost semihypergroups. Journal of Intelligent & Fuzzy Systems, 34(6), 4161-4172.
- 36. Hameed, M. S., Ahmad, Z., Mukhtar, S., & Ullah, A. (2021). Some results on χ-single valued neutrosophic subgroups. Indonesian Journal of Electrical Engineering and Computer Science, 23(3), 1583-1589.
- 37. Ali, S., Kousar, M., Xin, Q., Pamucar, D., Hameed, M. S., & Fayyaz, R. (2021). Belief and Possibility Belief Interval-Valued N-Soft Set and Their Applications in Multi-Attribute Decision-Making Problems. Entropy, 23(11), 1498.
- 38. Hameeda, M. S., Alia, S., Mukhtarb, S., Shoaibc, M., Ishaqa, M. K., & Mukhtiara, U. On characterization of χ-single valued neutrosophic sub-groups.
- 39. Immaculate, H. J., Ebenanjar, P. E., & Sivaranjani, K. (2020). Single Valued Neutrosophic Subrings and Ideals. Advances in Mathematics: Scientific Journal, 9, no.3, 725-737.

Received: Feb 1, 2022. Accepted: Jun 1, 2022