(α, β) Neutrosophic Subbisemiring of Bisemiring

M.Palanikumar¹,² and K. Arulmozhi²
¹ Department of Mathematics, Annamalai University, Tamilnadu, India; palanimaths86@gmail.com
² Department of Mathematics, Bharath Institute of Higher and Research, Chennai, India; arulmozhims@gmail.com
*Correspondence: palanimaths86@gmail.com;

Abstract. We introduce the notion of neutrosophic subbisemiring (shortly NSBS), level sets of NSBS and neutrosophic normal subbisemiring (NNSBS) of a bisemiring. The concept of neutrosophic subbisemiring is a new generalization of fuzzy subbisemiring over bisemiring. We interact the theory for (α, β) NSBS and NNSBS over bisemiring. Let A be the neutrosophic subset in S, we show that $\tilde{\tau} = (\tilde{\tau}_A, \tilde{\tau}_I, \tilde{\tau}_F)$ is an NSBS of S if and only if all non empty level set $\tilde{\tau}^{(t,s)}$ is a subbisemiring of S for $t, s \in [0, 1]$. Let A be the NSBS of a bisemiring S and V be the strongest neutrosophic relation of S, we observe that A is an NSBS of S if and only if V is an NSBS of $S \times S$. Let A_1, A_2, \ldots, A_n be the family of NSBS of S_1, S_2, \ldots, S_n respectively. We show that $A_1 \times A_2 \times \ldots \times A_n$ is an NSBS of $S_1 \times S_2 \times \ldots \times S_n$. The homomorphic image of NSBS is an NSBS. The homomorphic preimage of NSBS is an NSBS. Examples are provided to illustrate our results.

Keywords: Neutrosophic subbisemiring; Neutrosophic bisemiring; Homomorphism; Normal.

1. Introduction

The study of semirings was opened by the Dedekind in interaction with ideals of commutative rings. In 1934, semiring was studied by Vandever. It was basically the generalization of rings and distributive lattices. In 1950, However the developments of the theory in semirings had been taking place. The classic article of 1965, Zadeh proposed fuzzy set theory [15]. According to this definition a fuzzy set is a function described by a membership value. It takes degrees in real unit interval. But, later it has been seen that this definition is inadequate by considering not only the degree of membership but also the degree of non-membership. Neutrosophic set is a generalization of the fuzzy set and intuitionistic fuzzy set, where the truth-membership, indeterminacy-membership, and falsity-membership are represented independently. Atanassov [4] described a set that is called an intuitionistic fuzzy set to handle mentioned ambiguity. Since this set has some problems in applications, Smarandache [14] introduced neutrosophy to deal with the problems that involves indeterminate and inconsistent information. Arulmozhi interact the theory for various algebraic structures such semirings
and ternary semirings [2,3]. A semiring \((S, +, \cdot)\) is a non-empty set in which \((S, +)\) and \((S, \cdot)\) are semigroups such that “\(\cdot\)” is distributive over “\(+\)” [4]. In 1993, J. Ahsan, K. Saifullah, and F. Khan [1] introduced the notion of fuzzy semirings. In 2001, M.K Sen and S. Ghosh were introduced in bisemirings. A bisemiring \((S, +, \circ, \times)\) is an algebraic structure in which \((S, +, \circ)\) and \((S, \circ, \times)\) are semirings in which \((S, +), (S, \circ)\) and \((S, \times)\) are semigroups such that (i) \(x \circ (y + z) = (x \circ y) + (x \circ z)\), (ii) \((y + z) \circ x = (y \circ x) + (z \circ x)\) (iii) \(x \times (y \circ z) = (x \times y) \circ (x \times z)\) and (iv) \((y \circ z) \times x = (y \times x) \circ (z \times x)\), \(\forall x, y, z \in S\). A non-empty subset \(A\) of a bisemiring \((S, +, \circ, \times)\) is a sub-bisemiring if and only if \(x + y \in A\), \(x \circ y \in A\) and \(x \times y \in A\) for all \(x, y \in A\) [5]. Palanikumar et al. discussed various ideal structure of sub-bisemiring theory [7-12].

2. Preliminaries

Definition 2.1. [14] A neutrosophic set \(A\) in a universe \(U\) is an object having the form \(A = \{\langle x, \omega^T_A(x), \omega^I_A(x), \omega^F_A(x) \rangle : x \in X \}\), where \(\omega^T_A(x), \omega^I_A(x), \omega^F_A(x) : X \to [0, 1]\) represents the truth-membership function, the indeterminacy membership function and the falsity-membership function respectively. For simplicity the symbol \(\langle \omega^T_A, \omega^I_A, \omega^F_A \rangle\) is used for the neutrosophic set \(A = \{\langle x, \omega^T_A(x), \omega^I_A(x), \omega^F_A(x) \rangle : x \in X \}\).

Definition 2.2. [14] Let \(A = \{x, \omega^T_A(x), \omega^I_A(x), \omega^F_A(x) \}\) and \(B = \{x, \omega^T_B(x), \omega^I_B(x), \omega^F_B(x) \}\) be the two neutrosophic set of a set \(X\). Then (i) \(A \cap B = \{\langle x, \min\{\omega^T_A(x), \omega^T_B(x)\}, \min\{\omega^I_A(x), \omega^I_B(x)\}, \max\{\omega^F_A(x), \omega^F_B(x)\} \rangle : x \in X \}\).

(ii) \(A \cup B = \{\langle x, \max\{\omega^T_A(x), \omega^T_B(x)\}, \max\{\omega^I_A(x), \omega^I_B(x)\}, \min\{\omega^F_A(x), \omega^F_B(x)\} \rangle : x \in X \}\).

Definition 2.3. [14] For any neutrosophic set \(A = \{x, \omega^T_A(x), \omega^I_A(x), \omega^F_A(x) \}\) of a set \(X\), we defined a \((\alpha, \beta)\)-cut of as the crisp subset \(\{x \in X | \omega^T_A(x) \geq \alpha, \omega^I_A(x) \geq \alpha, \omega^F_A(x) \leq \beta \}\) of \(X\).

Definition 2.4. [14] Let \(A\) and \(B\) be be two neutrosophic subsets of \(S\). The Cartesian product of \(A\) and \(B\) denoted by \(A \times B\) is defined as \(A \times B = \{\omega_{A \times B}^T(x, y), \omega_{A \times B}^I(x, y), \omega_{A \times B}^F(x, y) \} \) for all \(x, y \in S\), where

\[
\begin{align*}
\omega_{A \times B}^T(x, y) &= \min\{\omega_A^T(x), \omega_B^T(y)\} \\
\omega_{A \times B}^I(x, y) &= \frac{\omega_A^I(x) + \omega_B^I(y)}{2} \\
\omega_{A \times B}^F(x, y) &= \max\{\omega_A^F(x), \omega_B^F(y)\}
\end{align*}
\]

Definition 2.5. [5] A fuzzy subset \(A\) of a bisemiring \((S, \cdot, \circ, \times)\) is said to be a fuzzy sub-bisemiring of \(S\) if

\[
\begin{align*}
\omega_A(x \cdot_1 y) &\geq \min\{\omega_A(x), \omega_A(y)\} \\
\omega_A(x \cdot_2 y) &\geq \min\{\omega_A(x), \omega_A(y)\} \\
\omega_A(x \cdot_3 y) &\geq \min\{\omega_A(x), \omega_A(y)\}
\end{align*}
\]

for all \(x, y \in S\).
Definition 2.6. A fuzzy subset A of a bisemiring $(S, \circ_1, \circ_2, \circ_3)$ is said to be a fuzzy normal subbisemiring of S if it satisfies the following conditions:

\[
\begin{align*}
\varpi_A(x \circ_1 y) &= \varpi_A(y \circ_1 x) \\
\varpi_A(x \circ_2 y) &= \varpi_A(y \circ_2 x) \\
\varpi_A(x \circ_3 y) &= \varpi_A(y \circ_3 x)
\end{align*}
\]

for all $x, y \in S$.

Definition 2.7. Let $(S, +, \cdot, \times)$ and $(T, \boxplus, \circ, \otimes)$ be two bisemirings. A function $\phi : S \rightarrow T$ is said to be a homomorphism if it satisfies the following conditions:

\[
\begin{align*}
\phi(x + y) &= \phi(x) \boxplus \phi(y) \\
\phi(x \cdot y) &= \phi(x) \circ \phi(y) \\
\phi(x \times y) &= \phi(x) \otimes \phi(y)
\end{align*}
\]

for all $x, y \in S$.

3. Neutrosophic Subbisemiring

In what follows, let S denote a bisemiring unless otherwise stated. Here NSBS stands for neutrosophic subbisemiring.

Definition 3.1. A neutrosophic subset A of S is said to be an NSBS of S if it satisfies the following conditions:

\[
\begin{align*}
\varpi^T_A(x \circ_1 y) &\geq \min\{\varpi^T_A(x), \varpi^T_A(y)\} \\
\varpi^T_A(x \circ_2 y) &\geq \min\{\varpi^T_A(x), \varpi^T_A(y)\} \\
\varpi^T_A(x \circ_3 y) &\geq \min\{\varpi^T_A(x), \varpi^T_A(y)\}
\end{align*}
\]

and

\[
\begin{align*}
\varpi^F_A(x \circ_1 y) &\leq \max\{\varpi^F_A(x), \varpi^F_A(y)\} \\
\varpi^F_A(x \circ_2 y) &\leq \max\{\varpi^F_A(x), \varpi^F_A(y)\} \\
\varpi^F_A(x \circ_3 y) &\leq \max\{\varpi^F_A(x), \varpi^F_A(y)\}
\end{align*}
\]

for all $x, y \in S$.

Example 3.2. Let $S = \{n_1, n_2, n_3, n_4\}$ be the bisemiring with the following Cayley table:

\[
\begin{array}{cccc}
\circ_1 & n_1 & n_2 & n_3 & n_4 \\
n_1 & n_1 & n_1 & n_1 & n_1 \\
n_2 & n_1 & n_2 & n_1 & n_2 \\
n_3 & n_1 & n_3 & n_3 & n_3 \\
n_4 & n_1 & n_2 & n_3 & n_4 \\
\end{array}
\]

M. Palanikumar, K. Arulmozhi, (α, β) Neutrosophic Subbisemiring of Bisemiring
Similarly, $\omega^T_A(n) = \omega^T_A(2n)$.

Similarly, $\omega^I_A(n) = \omega^I_A(2n)$. Now, $\omega^T(x \odot_1 y) = \inf_{i \in I} T(x \odot_1 y)
\geq \inf_{i \in I} \min \{ T_i(x), T_i(y) \}
= \min \{ \inf_{i \in I} T_i(x), \inf_{i \in I} T_i(y) \}
= \min \{ \omega^T_A(x), \omega^T_A(y) \}$.

Similarly, $\omega^F_A(x \odot_2 y) \geq \min \{ \omega^F_A(x), \omega^F_A(y) \}$, $\omega^F_A(x \odot_3 y) \geq \min \{ \omega^F_A(x), \omega^F_A(y) \}$. Now,

$$\omega^T_A(x \odot_2 y) = \inf_{i \in I} T(x \odot_2 y)
\geq \inf_{i \in I} \frac{T_i(x) + T_i(y)}{2}
= \inf_{i \in I} \frac{T_i(x) + T_i(y)}{2}
= \frac{\omega^T_A(x) + \omega^T_A(y)}{2}.$$
Proof. Let A and B be two $NSBS^*$ of S_1 and S_2 respectively. Let $x_1, x_2 \in S_1$ and $y_1, y_2 \in S_2$. Then (x_1, y_1) and (x_2, y_2) are in $S_1 \times S_2$. Now

$$\omega^T_{A \times B}((x_1, y_1) \circ_1 (x_2, y_2)) = \omega^T_{A \times B}(x_1 \circ_1 x_2, y_1 \circ_1 y_2)$$

$$= \min\{\omega^T_A(x_1 \circ_1 x_2), \omega_B(y_1 \circ_1 y_2)\}$$

$$\geq \min\{\min\{\omega^T_A(x_1), \omega_A(x_2)\}, \min\{\omega_B(y_1), \omega_B(y_2)\}\}$$

$$= \min\{\min\{\omega^T_A(x_1), \omega_B(y_1)\}, \min\{\omega_A(x_2), \omega_B(y_2)\}\}$$

$$= \min\{\omega^T_{A \times B}(x_1, y_1), \omega^T_{A \times B}(x_2, y_2)\}.$$

Also $\omega^T_{A \times B}((x_1, y_1) \circ_2 (x_2, y_2)) \geq \min\{\omega^T_{A \times B}(x_1, y_1), \omega^T_{A \times B}(x_2, y_2)\}$,

$$\omega^T_{A \times B}((x_1, y_1) \circ_3 (x_2, y_2)) = \min\{\omega^T_{A \times B}(x_1, y_1), \omega^T_{A \times B}(x_2, y_2)\}.$$

Now,

$$\omega^T_{A \times B}((x_1, y_1) \circ_1 (x_2, y_2)) = \omega^T_{A \times B}(x_1 \circ_1 x_2, y_1 \circ_1 y_2)$$

$$= \omega^T_A(x_1 \circ_1 x_2) + \omega^T_B(y_1 \circ_1 y_2)$$

$$\geq \frac{1}{2} \left[\frac{\omega^T_A(x_1) + \omega^T_A(x_2)}{2} + \frac{\omega^T_B(y_1) + \omega^T_B(y_2)}{2} \right]$$

$$= \frac{1}{2} \left[\omega^T_A(x_1) + \omega^T_B(y_1) + \omega^T_A(x_2) + \omega^T_B(y_2) \right]$$

$$= \frac{1}{2} \left[\omega^T_{A \times B}(x_1, y_1) + \omega^T_{A \times B}(x_2, y_2) \right].$$

Also $\omega^T_{A \times B}((x_1, y_1) \circ_2 (x_2, y_2)) \geq \frac{1}{2} \left[\omega^T_{A \times B}(x_1, y_1) + \omega^T_{A \times B}(x_2, y_2) \right]$ and

$$\omega^T_{A \times B}((x_1, y_1) \circ_3 (x_2, y_2)) \geq \frac{1}{2} \left[\omega^T_{A \times B}(x_1, y_1) + \omega^T_{A \times B}(x_2, y_2) \right].$$

Now,

$$\omega^F_{A \times B}((x_1, y_1) \circ_1 (x_2, y_2)) = \omega^F_{A \times B}(x_1 \circ_1 x_2, y_1 \circ_1 y_2)$$

$$= \max\{\omega^F_A(x_1 \circ_1 x_2), \omega^F_B(y_1 \circ_1 y_2)\}$$

$$\leq \max\{\max\{\omega^F_A(x_1), \omega^F_A(x_2)\}, \max\{\omega^F_B(y_1), \omega^F_B(y_2)\}\}$$

$$= \max\{\max\{\omega^F_A(x_1), \omega^F_B(y_1)\}, \max\{\omega^F_A(x_2), \omega^F_B(y_2)\}\}$$

$$= \max\{\omega^F_{A \times B}(x_1, y_1), \omega^F_{A \times B}(x_2, y_2)\}.$$

Also $\omega^F_{A \times B}((x_1, y_1) \circ_2 (x_2, y_2)) \leq \max\{\omega^F_{A \times B}(x_1, y_1), \omega^F_{A \times B}(x_2, y_2)\}$,

$$\omega^F_{A \times B}((x_1, y_1) \circ_3 (x_2, y_2)) = \min\{\omega^F_{A \times B}(x_1, y_1), \omega^F_{A \times B}(x_2, y_2)\}. \text{ Hence } A \times B \text{ is an NSBS of } S.$$

Corollary 3.5. If A_1, A_2, \ldots, A_n are the family of $NSBS^*$ of S_1, S_2, \ldots, S_n respectively, then $A_1 \times A_2 \times \ldots \times A_n$ is an NSBS of $S_1 \times S_2 \times \ldots \times S_n.$

M.Palanikumar, K.Arulmozhi, (α, β) Neutrosophic Subbisemiring of Bisemiring
Definition 3.6. Let A be a neutrosophic subset in S, the strongest neutrosophic relation on S, that is a neutrosophic relation on A is V given by

$$
\begin{align*}
\varpi^T_v(x, y) &= \min\{\varpi^T_A(x), \varpi^T_A(y)\} \\
\varpi^I_v(x, y) &= \frac{\varpi^I_A(x) + \varpi^I_A(y)}{2} \\
\varpi^F_v(x, y) &= \max\{\varpi^F_A(x), \varpi^F_A(y)\}
\end{align*}
$$

Theorem 3.7. Let A be the NSBS of S and V be the strongest neutrosophic relation of S. Then A is an NSBS of S if and only if V is an NSBS of $S \times S$.

Proof. Let A be the NSBS of S and V be the strongest neutrosophic relation of S. Then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in $S \times S$. We have

$$
\varpi^T_v(x \circ_1 y) = \varpi^T_v[(x_1, x_2) \circ_1 (y_1, y_2)]
= \varpi^T_v(x_1 \circ_1 y_1, x_2 \circ_1 y_2)
= \min\{\varpi^T_A(x_1 \circ_1 y_1), \varpi^T_A(x_2 \circ_1 y_2)\}
\geq \min\{\min\{\varpi^T_A(x_1), \varpi^T_A(y_1)\}, \min\{\varpi^T_A(x_2), \varpi^T_A(y_2)\}\}
= \min\{\varpi^T_A(x_1), \varpi^T_A(x_2), \varpi^T_A(y_1), \varpi^T_A(y_2)\}
= \min\{\varpi^T_v(x_1, x_2), \varpi^T_v(x_1, y_2)\}
= \min\{\varpi^T_v(x), \varpi^T_v(y)\}.
$$

Also, $\varpi^F_v(x \circ_2 y) \geq \min\{\varpi^F_v(x), \varpi^F_v(y)\}$, $\varpi^F_v(x \circ_3 y) \geq \min\{\varpi^F_v(x), \varpi^F_v(y)\}$.

Now,

$$
\varpi^I_v(x \circ_1 y) = \varpi^I_v[(x_1, x_2) \circ_1 (y_1, y_2)]
= \varpi^I_v(x_1 \circ_1 y_1, x_2 \circ_1 y_2)
= \frac{\varpi^I_A(x_1 \circ_1 y_1) + \varpi^I_A(x_2 \circ_1 y_2)}{2}
\geq \frac{1}{2} \left[\frac{\varpi^I_A(x_1) + \varpi^I_A(y_1)}{2} + \frac{\varpi^I_A(x_2) + \varpi^I_A(y_2)}{2} \right]
= \frac{1}{2} \left[\frac{\varpi^I_A(x_1) + \varpi^I_A(x_2)}{2} + \frac{\varpi^I_A(y_1) + \varpi^I_A(y_2)}{2} \right]
= \varpi^I_v(x_1, x_2) + \varpi^I_v(x_1, y_2)
= \frac{\varpi^I_v(x) + \varpi^I_v(y)}{2}.
$$

Also, $\varpi^I_v(x \circ_2 y) \geq \frac{\varpi^I_v(x) + \varpi^I_v(y)}{2}$ and $\varpi^I_v(x \circ_3 y) \geq \frac{\varpi^I_v(x) + \varpi^I_v(y)}{2}$.

Similarly, $\varpi^F_v(x \circ_1 y) \leq \max\{\varpi^F_v(x), \varpi^F_v(y)\}$, $\varpi^F_v(x \circ_2 y) \leq \max\{\varpi^F_v(x), \varpi^F_v(y)\}$ and $\varpi^F_v(x \circ_3 y) \leq \max\{\varpi^F_v(x), \varpi^F_v(y)\}$. Hence V is an NSBS of $S \times S$.

M.Palanikumar, K.Arulmozh, (α, β) Neutrosophic Subbisemiring of Besiuming
Conversely assume that V is an NSBS of $S \times S$, then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in $S \times S$. We have

$$\min \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} = \varpi^T_V(x_1 \oplus y_1, x_2 \oplus y_2)$$

$$= \varpi^T_V([x_1, x_2] \odot (y_1, y_2)]$$

$$= \varpi^T_V(x \odot y)$$

$$\geq \min \{ \varpi^T_V(x), \varpi^T_V(y) \}$$

$$= \min \{ \varpi^T_V(x_1, x_2), \varpi^T_V(y_1, y_2) \}$$

$$= \min \{ \min \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \min \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

If $\varpi^T_A(x_1 \odot y_1) \leq \varpi^T_A(x_2 \odot y_2)$, then $\varpi^T_A(x_1) \leq \varpi^T_A(x_2)$ and $\varpi^T_A(y_1) \leq \varpi^T_A(y_2)$. We get $\varpi^T_A(x_1 \odot y_1) \geq \min \{ \varpi^T_A(x_1), \varpi^T_A(y_1) \}$ for all $x_1, y_1 \in S$, and

$$\min \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} \geq \min \{ \min \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \min \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

If $\varpi^T_A(x_1 \odot y_2) \leq \varpi^T_A(x_2 \odot y_2)$, then $\varpi^T_A(x_1) \leq \varpi^T_A(x_2)$ and $\varpi^T_A(y_1) \leq \varpi^T_A(y_2)$. We get $\varpi^T_A(x_1 \odot y_1) \geq \min \{ \varpi^T_A(x_1), \varpi^T_A(y_1) \}$ for all $x_1, y_1 \in S$, and

$$\min \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} \geq \min \{ \min \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \min \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

If $\varpi^T_A(x_1 \odot y_1) \leq \varpi^T_A(x_2 \odot y_2)$, then $\varpi^T_A(x_1) \odot \varpi^T_A(y_1) \leq \varpi^T_A(x_2) \odot \varpi^T_A(y_2)$. We get $\varpi^T_A(x_1 \odot y_1) \geq \min \{ \varpi^T_A(x_1), \varpi^T_A(y_1) \}$ for all $x_1, y_1 \in S$, and

$$\min \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} \geq \min \{ \min \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \min \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

$$\frac{1}{2} \left[\varpi^T_A(x_1 \odot y_1) + \varpi^T_A(x_2 \odot y_2) \right] = \varpi^T_V(x_1 \odot y_1, x_2 \odot y_2)$$

$$= \varpi^T_V([x_1, x_2] \odot (y_1, y_2)]$$

$$= \varpi^T_V(x \odot y)$$

$$\geq \frac{\varpi^T_V(x) + \varpi^T_V(y)}{2}$$

$$= \frac{\varpi^T_V(x_1, x_2) + \varpi^T_V(y_1, y_2)}{2}$$

$$= \frac{1}{2} \left[\frac{\varpi^T_A(x_1) + \varpi^T_A(x_2)}{2} + \frac{\varpi^T_A(y_1) + \varpi^T_A(y_2)}{2} \right].$$

If $\varpi^T_A(x_1 \odot y_1) \leq \varpi^T_A(x_2 \odot y_2)$, then $\varpi^T_A(x_1) \leq \varpi^T_A(x_2)$ and $\varpi^T_A(y_1) \leq \varpi^T_A(y_2)$. We get $\varpi^T_A(x_1 \odot y_1) \geq \min \{ \varpi^T_A(x_1), \varpi^T_A(y_1) \}$ for all $x_1, y_1 \in S$, and

$$\min \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} \geq \min \{ \min \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \min \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

$$\frac{1}{2} \left[\varpi^T_A(x_1 \odot y_1) + \varpi^T_A(x_2 \odot y_2) \right] = \varpi^T_V(x_1 \odot y_1, x_2 \odot y_2)$$

$$= \varpi^T_V([x_1, x_2] \odot (y_1, y_2)]$$

$$= \varpi^T_V(x \odot y)$$

$$\geq \frac{\varpi^T_V(x) + \varpi^T_V(y)}{2}$$

$$= \frac{\varpi^T_V(x_1, x_2) + \varpi^T_V(y_1, y_2)}{2}$$

$$= \frac{1}{2} \left[\frac{\varpi^T_A(x_1) + \varpi^T_A(x_2)}{2} + \frac{\varpi^T_A(y_1) + \varpi^T_A(y_2)}{2} \right].$$

Similarly, $\varpi^T_A(x_1 \odot y_1) \geq \varpi^T_A(x_2 \odot y_1)$ and $\varpi^T_A(x_1 \odot y_1) \geq \varpi^T_A(x_2 \odot y_2)$.

Similarly to prove that

$$\max \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} \leq \max \{ \max \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \max \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

If $\varpi^T_A(x_1 \odot y_1) \geq \varpi^T_A(x_2 \odot y_1)$, then $\varpi^T_A(x_1) \geq \varpi^T_A(x_2)$ and $\varpi^T_A(y_1) \geq \varpi^T_A(y_2)$. We get $\varpi^T_A(x_1 \odot y_1) \leq \max \{ \varpi^T_A(x_1), \varpi^T_A(y_1) \}$.

$$\max \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} \leq \max \{ \max \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \max \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

If $\varpi^T_A(x_1 \odot y_1) \geq \varpi^T_A(x_2 \odot y_1)$, then $\varpi^T_A(x_1) \odot \varpi^T_A(y_1) \leq \varpi^T_A(x_2) \odot \varpi^T_A(y_2)$. We get $\varpi^T_A(x_1 \odot y_1) \leq \max \{ \varpi^T_A(x_1), \varpi^T_A(y_1) \}$.

$$\max \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} \leq \max \{ \max \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \max \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

$$\max \{ \varpi^T_A(x_1 \odot y_1), \varpi^T_A(x_2 \odot y_2) \} \leq \max \{ \max \{ \varpi^T_A(x_1), \varpi^T_A(x_2) \}, \max \{ \varpi^T_A(y_1), \varpi^T_A(y_2) \} \}.$$

M.Palanikumar, K.Arulmozhi, (α, β) Neutrosophic Subbisemiring of Bisemiring
If \(\varpi_A^T(x \circ_3 y_1) \geq \varpi_A^T(x_2 \circ_3 y_2) \), then \(\varpi_A^F(x_1 \circ_3 y_1) \leq \max\{ \varpi_A^F(x_1), \varpi_A^F(y_1) \} \).

Hence \(A \) is an NSBS of \(S \).

Theorem 3.8. Let \(A \) be a neutrosophic subset in \(S \). Then \(\tilde{\varpi} = (\varpi_A^T, \varpi_A^I, \varpi_A^F) \) is an NSBS of \(S \) if and only if all non empty level set \(\tilde{\varpi}^{(t,s)} \) is a subbisemiring of \(S \) for \(t, s \in [0, 1] \).

Proof. Assume that \(\tilde{\varpi} \) is an NSBS of \(S \). For each \(t, s \in [0, 1] \) and \(a_1, a_2 \in \tilde{\varpi}^{(t,s)} \). We have \(\varpi_A^T(a_1) \geq t, \varpi_A^T(a_2) \geq t \) and \(\varpi_A^I(a_1) \geq t, \varpi_A^I(a_2) \geq t \) and \(\varpi_A^F(a_1) \leq s, \varpi_A^F(a_2) \leq s \). Now, \(\varpi_A^T(a_1 \circ_1 a_2) \geq \min\{ \varpi_A^T(a_1), \varpi_A^T(a_2) \} \geq t \) and \(\varpi_A^I(a_1 \circ_1 a_2) \geq \varpi_A^I(a_1) + \varpi_A^I(a_2) \geq t + t = t \) and \(\varpi_A^F(a_1 \circ_1 a_2) \leq \max\{ \varpi_A^F(a_1), \varpi_A^F(a_2) \} \leq s \). This implies that \(a_1 \circ_1 a_2 \in \tilde{\varpi}^{(t,s)} \). Similarly, \(a_1 \circ_2 a_2 \in \tilde{\varpi}^{(t,s)} \) and \(a_1 \circ_3 a_2 \in \tilde{\varpi}^{(t,s)} \). Therefore \(\tilde{\varpi}^{(t,s)} \) is a subbisemiring of \(S \) for each \(t, s \in [0, 1] \).

Conversely, assume that \(\tilde{\varpi}^{(t,s)} \) is a subbisemiring of \(S \) for each \(t, s \in [0, 1] \). Suppose if there exist \(a_1, a_2 \in S \) such that \(\varpi_A^T(a_1 \circ_1 a_2) < \min\{ \varpi_A^T(a_1), \varpi_A^T(a_2) \} \), \(\varpi_A^I(a_1 \circ_1 a_2) < \varpi_A^I(a_1) + \varpi_A^I(a_2) \) and \(\varpi_A^F(a_1 \circ_1 a_2) > \max\{ \varpi_A^F(a_1), \varpi_A^F(a_2) \} \). Select \(t, s \in [0, 1] \) such that \(\varpi_A^T(a_1 \circ_1 a_2) < t \leq \min\{ \varpi_A^T(a_1), \varpi_A^T(a_2) \} \) and \(\varpi_A^I(a_1 \circ_1 a_2) < t \leq \varpi_A^I(a_1) + \varpi_A^I(a_2) \) and \(\varpi_A^F(a_1 \circ_1 a_2) > s \geq \max\{ \varpi_A^F(a_1), \varpi_A^F(a_2) \} \). Then \(a_1, a_2 \in \tilde{\varpi}^{(t,s)} \), but \(a_1 \circ_1 a_2 \notin \tilde{\varpi}^{(t,s)} \). This contradicts to that \(\tilde{\varpi}^{(t,s)} \) is a subbisemiring of \(S \). Hence \(\varpi_A^T(a_1 \circ_1 a_2) \geq \min\{ \varpi_A^T(a_1), \varpi_A^T(a_2) \} \), \(\varpi_A^I(a_1 \circ_1 a_2) \geq \varpi_A^I(a_1) + \varpi_A^I(a_2) \) and \(\varpi_A^F(a_1 \circ_1 a_2) \leq \max\{ \varpi_A^F(a_1), \varpi_A^F(a_2) \} \). Similarly, \(\circ_2 \) and \(\circ_3 \) cases. Hence \(\tilde{\varpi} = (\varpi_A^T, \varpi_A^I, \varpi_A^F) \) is an NSBS of \(S \).

Definition 3.9. Let \(A \) be any NSBS of \(S \) and \(a \in S \). Then the pseudo neutrosophic coset \((aA)^p\) is defined by

\[
\begin{align*}
(a(A^T))^p(x) &= p(a) \varpi_A^T(x) \\
(a(A^I))^p(x) &= p(a) \varpi_A^I(x) \\
(a(A^F))^p(x) &= p(a) \varpi_A^F(x)
\end{align*}
\]

for every \(x \in S \) and for some \(p \in P \).

Theorem 3.10. Let \(A \) be any NSBS of \(S \), then the pseudo neutrosophic coset \((aA)^p\) is an NSBS of \(S \), for every \(a \in S \).

Proof. Let \(A \) be any NSBS of \(S \) and for every \(x, y \in S \). Now, \(((aA^T)^p)(x \circ_1 y) = p(a) \varpi_A^T(x \circ_1 y) \geq p(a) \min\{ \varpi_A^T(x), \varpi_A^T(y) \} = \min\{ p(a) \varpi_A^T(x), p(a) \varpi_A^T(y) \} = \min\{ ((aA^T)^p)(x), ((aA^T)^p)(y) \} \). Thus, \(((aA^T)^p)(x \circ_1 y) \geq \min\{ ((aA^T)^p)(x), ((aA^T)^p)(y) \} \).

Now, \(((aA^I)^p)(x \circ_1 y) = p(a) \varpi_A^I(x \circ_1 y) \geq p(a) \left\lceil \frac{\varpi_A^I(x) + \varpi_A^I(y)}{2} \right\rceil = \frac{p(a) \varpi_A^I(x) + p(a) \varpi_A^I(y)}{2} = \left\lceil (aA^I)^p(x) + (aA^I)^p(y) \right\rceil \). Thus, \(((aA^I)^p)(x \circ_1 y) \geq \left\lceil (aA^I)^p(x) + (aA^I)^p(y) \right\rceil \). Now, \(((aA^F)^p)(x \circ_1 y) = p(a) \varpi_A^F(x \circ_1 y) \leq p(a) \max\{ \varpi_A^F(x), \varpi_A^F(y) \} = \max\{ p(a) \varpi_A^F(x), p(a) \varpi_A^F(y) \} \).

M.Palanikumar, K.Arulmozhi, \((\alpha, \beta)\) Neutrosophic Subbisemiring of Bisemiring
max\{((a\circ_1^p)A^p)(x), ((a\circ_3^p)A^p)(y)\}. Thus, \((a\circ_2^p)A^p(x, y_1) \leq \max\{((a\circ_1^p)A^p)(x), ((a\circ_3^p)A^p)(y)\}.

Similarly, \(\circ_2\) and \(\circ_3\) cases. Hence \((aA)^p\) is an NSBS of \(S\).

Definition 3.11. Let \((S_1, \boxplus_1, \boxplus_2, \boxplus_3)\) and \((S_2, \boxplus_1, \boxplus_2, \boxplus_3)\) be any two bisemirings. Let \(\Delta : S_1 \rightarrow S_2\) be any function and \(A\) be any NSBS in \(S_1\), \(V\) be any NSBS in \(\Delta(S_1) = S_2\). If \(\varpi_A = [\varpi_A^T, \varpi_A^F, \varpi_A^I]\) is a neutrosophic set in \(S_1\), then \(\varpi_V\) is a neutrosophic set in \(S_2\), defined by

\[
\varpi_V^T(x) = \begin{cases}
\sup \varpi_A^T(z) & \text{if } z \in \Delta^{-1}(x) \\
0 & \text{otherwise}
\end{cases} \\
\varpi_V^F(y) = \begin{cases}
\inf \varpi_A^F(z) & \text{if } z \in \Delta^{-1}(y) \\
1 & \text{otherwise}
\end{cases}
\]

for all \(x \in S_1\) and \(y \in S_2\) is called the image of \(\varpi_A\) under \(\Delta\).

Similarly, If \(\varpi_V = [\varpi_V^T, \varpi_V^F, \varpi_V^I]\) is a neutrosophic set in \(S_2\), then neutrosophic set \(\varpi_A = \Delta \circ_\varpi V\) in \(S_1\) [i.e, the neutrosophic set defined by \(\varpi_A(x) = \varpi_V(\Delta(x))\)] is called the preimage of \(\varpi_V\) under \(\Delta\).

Theorem 3.12. Let \((S_1, \boxplus_1, \boxplus_2, \boxplus_3)\) and \((S_2, \boxplus_1, \boxplus_2, \boxplus_3)\) be any two bisemirings. The homomorphic image of NSBS of \(S_1\) is an NSBS of \(S_2\).

Proof. Let \(\Delta : S_1 \rightarrow S_2\) be any homomorphism. Then \(\Delta(x \boxplus_1 y) = \Delta(x) \boxplus_1 \Delta(y), \Delta(x \boxplus_2 y) = \Delta(x) \boxplus_2 \Delta(y)\) and \(\Delta(x \boxplus_3 y) = \Delta(x) \boxplus_3 \Delta(y)\) for all \(x, y \in S_1\). Let \(V = \Delta(A), A\) is any NSBS of \(S_1\). Let \(\Delta(x), \Delta(y) \in S_2\). Let \(x \in \Delta^{-1}(\Delta(x))\) and \(y \in \Delta^{-1}(\Delta(y))\) be such that \(\varpi_A^T(x) = \sup_{z \in \Delta^{-1}(\Delta(x))} \varpi_A^T(z)\) and \(\varpi_A^F(y) = \sup_{z \in \Delta^{-1}(\Delta(y))} \varpi_A^F(z)\). Now,

\[
\varpi_V^T(\Delta(x) \boxplus_1 \Delta(y)) = \sup_{z' \in \Delta^{-1}(\Delta(x) \boxplus_1 \Delta(y))} \varpi_A^T(z')
\]

\[
\quad = \sup_{z' \in \Delta^{-1}(\Delta(x) \boxplus_1 y)} \varpi_A^T(z')
\]

\[
\quad = \varpi_A^T(x \boxplus_1 y)
\]

\[
\quad \geq \min\{\varpi_A^T(x), \varpi_A^T(y)\}
\]

\[
\quad = \min\{\varpi_V^T(\Delta(x)), \varpi_V^T(\Delta(y))\}.
\]

Thus, \(\varpi_V^T(\Delta(x) \boxplus_1 \Delta(y)) \geq \min\{\varpi_V^T(\Delta(x)), \varpi_V^T(\Delta(y))\}\).

Similarly, \(\varpi_V^T(\Delta(x) \boxplus_2 \Delta(y)) \geq \min\{\varpi_V^T(\Delta(x)), \varpi_V^T(\Delta(y))\}\) and \(\varpi_V^T(\Delta(x) \boxplus_3 \Delta(y)) \geq \min\{\varpi_V^T(\Delta(x)), \varpi_V^T(\Delta(y))\}\).

Let \(x \in \Delta^{-1}(\Delta(x))\) and \(y \in \Delta^{-1}(\Delta(y))\) be such that \(\varpi_A^T(x) = \sup_{z \in \Delta^{-1}(\Delta(x))} \varpi_A^T(z)\) and

M.Palanikumar, K.Aruolmozhi, \((\alpha, \beta)\) Neutrosophic Subsemiring of Bismiring
\[\omega_A^I(y) = \sup_{z \in \Delta^{-1}(\Delta(y))} \omega_A^I(z). \]

Now,

\[\omega_A^I(\Delta(x) \Box_1 \Delta(y)) = \sup_{z' \in \Delta^{-1}(\Delta(x) \Box_1 \Delta(y))} \omega_A^I(z') \]
\[= \sup_{z' \in \Delta^{-1}(\Delta(x) \boxplus_1 \Delta(y))} \omega_A^I(z') \]
\[= \omega_A^I(x \boxplus_1 y) \]
\[\geq \frac{\omega_A^I(x) + \omega_A^I(y)}{2} \]
\[= \frac{\omega_A^I(\Delta(x)) + \omega_A^I(\Delta(y))}{2}. \]

Thus, \(\omega_A^I(\Delta(x) \Box_1 \Delta(y)) \geq \frac{\omega_A^I(\Delta(x)) + \omega_A^I(\Delta(y))}{2} \).

Similarly, \(\omega_A^I(\Delta(x) \Box_2 \Delta(y)) \geq \frac{\omega_A^I(\Delta(x)) + \omega_A^I(\Delta(y))}{2} \) and \(\omega_A^I(\Delta(x) \Box_3 \Delta(y)) \geq \frac{\omega_A^I(\Delta(x)) + \omega_A^I(\Delta(y))}{2} \).

Let \(\Delta(x), \Delta(y) \in S_2 \). Let \(x \in \Delta^{-1}(\Delta(x)) \) and \(y \in \Delta^{-1}(\Delta(y)) \) be such that \(\omega_A^F(x) = \inf_{z \in \Delta^{-1}(\Delta(x))} \omega_A^F(z) \) and \(\omega_A^F(y) = \inf_{z \in \Delta^{-1}(\Delta(y))} \omega_A^F(z) \).

Now,

\[\omega_A^F(\Delta(x) \Box_1 \Delta(y)) = \inf_{z' \in \Delta^{-1}(\Delta(x) \Box_1 \Delta(y))} \omega_A^F(z') \]
\[= \inf_{z' \in \Delta^{-1}(\Delta(x) \Box_1 \Delta(y))} \omega_A^F(z') \]
\[= \omega_A^F(x \boxplus_1 y) \]
\[\leq \max\{\omega_A^F(x), \omega_A^F(y)\} \]
\[= \max\{\omega_A^F(\Delta(x)), \omega_A^F(\Delta(y))\}. \]

Thus, \(\omega_A^F(\Delta(x) \Box_1 \Delta(y)) \leq \max\{\omega_A^F(\Delta(x)), \omega_A^F(\Delta(y))\} \).

Similarly, \(\omega_A^F(\Delta(x) \Box_2 \Delta(y)) \leq \max\{\omega_A^F(\Delta(x)), \omega_A^F(\Delta(y))\} \) and \(\omega_A^F(\Delta(x) \Box_3 \Delta(y)) \leq \max\{\omega_A^F(\Delta(x)), \omega_A^F(\Delta(y))\} \).

Hence \(V \) is an NSBS of \(S_2 \).

Theorem 3.13. Let \((S_1, \Box_1, \boxplus_1, \Box_3) \) and \((S_2, \Box_1, \boxplus_2, \Box_3) \) be any two bisemirings. The homomorphic preimage of NSBS of \(S_2 \) is an NSBS of \(S_1 \).

Proof. Let \(\Delta : S_1 \to S_2 \) be any homomorphism. Then \(\Delta(x \Box_1 y) = \Delta(x) \Box_1 \Delta(y) \) and \(\Delta(x \Box_3 y) = \Delta(x) \Box_3 \Delta(y) \) for all \(x, y \in S_1 \). Let \(V = \Delta(A) \), where \(V \) is any NSBS of \(S_2 \). Let \(x, y \in S_1 \). Now, \(\omega_A^T(x \Box_1 y) = \omega_A^T(\Delta(x \Box_1 y)) = \omega_A^T(\Delta(x) \Box_1 \Delta(y)) \geq \min\{\omega_A^T(\Delta(x)), \omega_A^T(\Delta(y))\} \).

Thus, \(\omega_A^T(x \Box_1 y) \geq \min\{\omega_A^T(\Delta(x)), \omega_A^T(\Delta(y))\} \).

Now, \(\omega_A^T(x \Box_1 y) = \omega_A^T(\Delta(x \Box_1 y)) = \omega_A^T(\Delta(x) \Box_1 \Delta(y)) \geq \frac{\omega_A^T(\Delta(x)) + \omega_A^T(\Delta(y))}{2} \).

Thus, \(\omega_A^T(x \Box_1 y) \geq \frac{\omega_A^T(\Delta(x)) + \omega_A^T(\Delta(y))}{2} \).

Similarly to prove other operations, hence \(A \) is an NSBS of \(S_1 \).

M.Palanikumar, K.Arunmozhi, \((\alpha, \beta)\) Neutrosophic Subsemiring of Bisemiring
Theorem 3.14. Let $(S_1, +_1, \cdot_1, \sqcup_2, \sqcap_3)$ and $(S_2, +_2, \cdot_2, \sqcup_3, \sqcap_3)$ be any two bisemirings. If $\Delta : S_1 \rightarrow S_2$ is a homomorphism, then $\Delta(A_{(t,s)})$ is a level subsemiring of NSBS V of S_2.

Proof. Let $\Delta : S_1 \rightarrow S_2$ be any homomorphism. Then $\Delta(x +_1 y) = \Delta(x) +_1 \Delta(y), \Delta(x +_2 y) = \Delta(x) +_2 \Delta(y)$ and $\Delta(x +_3 y) = \Delta(x) +_3 \Delta(y)$ for all $x, y \in S_1$. Let $V = \Delta(A)$, A is an NSBS of S_1. By Theorem 3.12 V is an NSBS of S_2. Let $A_{(t,s)}$ be any level subsemiring of A. Suppose that $x, y \in A_{(t,s)}$. Then $\Delta(x +_1 y), \Delta(x +_2 y)$ and $\Delta(x +_3 y) \in A_{(t,s)}$. Now, $\varpi^T_A(\Delta(x)) = \varpi^T_A(x) \geq t, \varpi^T_A(\Delta(y)) = \varpi^T_A(y) \geq t$. Thus, $\varpi^T_A(\Delta(x) +_1 \Delta(y)) = \varpi^T_A(x) +_1 \varpi^T_A(y) \geq t$. Now, $\varpi^T_A(\Delta(x)) = \varpi^T_A(x) \geq t, \varpi^T_A(\Delta(y)) = \varpi^T_A(y) \geq t$. Thus, $\varpi^T_A(\Delta(x) +_2 \Delta(y)) = \varpi^T_A(x) +_2 \varpi^T_A(y) \geq t$. Now, $\varpi^T_A(\Delta(x)) = \varpi^T_A(x) \leq s, \varpi^T_A(\Delta(y)) = \varpi^T_A(y) \leq s$. Thus, $\varpi^T_A(\Delta(x) +_3 \Delta(y)) \leq \varpi^T_A(x) +_3 \varpi^T_A(y) \leq s$, for all $\Delta(x), \Delta(y) \in S_2$. Similarly to prove other operations, hence $\Delta(A_{(t,s)})$ is a level subsemiring of NSBS V of S_2.

Theorem 3.15. Let $(S_1, +_1, \cdot_1, \sqcup_2, \sqcap_3)$ and $(S_2, +_2, \cdot_2, \sqcup_3, \sqcap_3)$ be any two bisemirings. If $\Delta : S_1 \rightarrow S_2$ is any homomorphism, then $A_{(t,s)}$ is a level subsemiring of NSBS A of S_1.

Proof. Let $\Delta : S_1 \rightarrow S_2$ be any homomorphism. Then $\Delta(x +_1 y) = \Delta(x) +_1 \Delta(y), \Delta(x +_2 y) = \Delta(x) +_2 \Delta(y)$ and $\Delta(x +_3 y) \in \Delta(A_{(t,s)})$. Now, $\varpi^T_A(x) = \varpi^T_A(\Delta(x)) \geq t, \varpi^T_A(y) = \varpi^T_A(\Delta(y)) \geq t$. Thus, $\varpi^T_A(x +_1 y) \geq \min\{\varpi^T_A(x), \varpi^T_A(y)\} \geq t$. Now, $\varpi^T_A(x) = \varpi^T_A(\Delta(x)) \geq t, \varpi^T_A(y) = \varpi^T_A(\Delta(y)) \geq t$. Thus, $\varpi^T_A(x +_2 y) \geq \frac{\varpi^T_A(x) + \varpi^T_A(y)}{2} \geq t$. Now, $\varpi^T_A(x) = \varpi^T_A(\Delta(x)) \leq s, \varpi^T_A(y) = \varpi^T_A(\Delta(y)) \leq s$. Thus, $\varpi^T_A(x +_3 y) = \varpi^T_A(\Delta(x) +_1 \Delta(y)) \leq \max\{\varpi^T_A(x), \varpi^T_A(y)\} \leq s$, for all $x, y \in S_1$. Similarly to prove other two operations, hence $A_{(t,s)}$ is a level subsemiring of NSBS A of S_1.

4. (α, β)- neutrosophic Subsemiring

In this section, we discuss about (α, β)- neutrosophic subsemiring. In what follows that, $(\alpha, \beta) \in [0, 1]$ be such that $0 \leq \alpha < \beta \leq 1$.

Definition 4.1. Let A be any neutrosophic subset of S is called a (α, β)- NSBS of S if it satisfies the following conditions:

$$
\begin{align*}
\max\{\varpi^T_A(x \circ_1 y), \alpha\} &\geq \min\{\varpi^T_A(x), \varpi^T_A(y), \beta\} \\
\max\{\varpi^T_A(x \circ_2 y), \alpha\} &\geq \min\{\varpi^T_A(x), \varpi^T_A(y), \beta\} \\
\max\{\varpi^T_A(x \circ_3 y), \alpha\} &\geq \min\{\varpi^T_A(x), \varpi^T_A(y), \beta\}
\end{align*}
$$

M.Palanikumar, K.Arulmozhi, (α, β) Neutrosophic Subsemiring of Bisemiring
Theorem 4.3. The intersection of a family of \(A \) \(S \) such that for all \(x, y \in S \),

\[
\begin{align*}
\max \{ \omega_A^T(x \diamond_1 y), \alpha \} & \geq \min \left\{ \frac{\omega_A^T(x) + \omega_A^T(y)}{2}, \beta \right\} \\
\max \{ \omega_A^T(x \diamond_2 y), \alpha \} & \geq \min \left\{ \frac{\omega_A^T(x) + \omega_A^T(y)}{2}, \beta \right\} \\
\max \{ \omega_A^T(x \diamond_3 y), \alpha \} & \geq \min \left\{ \frac{\omega_A^T(x) + \omega_A^T(y)}{2}, \beta \right\}
\end{align*}
\]

\OR

\[
\begin{align*}
\min \{ \omega_A^T(x \diamond_1 y), \alpha \} & \leq \max \{ \omega_A^T(x), \omega_A^T(y), \beta \} \\
\min \{ \omega_A^T(x \diamond_2 y), \alpha \} & \leq \max \{ \omega_A^T(x), \omega_A^T(y), \beta \} \\
\min \{ \omega_A^T(x \diamond_3 y), \alpha \} & \leq \max \{ \omega_A^T(x), \omega_A^T(y), \beta \}
\end{align*}
\]

for all \(x, y \in S \).

Example 4.2. By the Example 3.2.

\begin{tabular}{|c|c|c|c|}
\hline
\(n = n_1 \) & \(n = n_2 \) & \(n = n_3 \) & \(n = n_4 \) \\
\hline
\(\omega_A^T(n) \) & 0.80 & 0.75 & 0.55 & 0.70 \\
\(\omega_A^f(n) \) & 0.75 & 0.70 & 0.62 & 0.65 \\
\(\omega_A^F(n) \) & 0.35 & 0.65 & 0.80 & 0.70 \\
\hline
\end{tabular}

Clearly, \(A \) is a \((0.45, 0.60)\) NSBS of \(S \).

Theorem 4.3. The intersection of a family of \((\alpha, \beta)\) NSBS* of \(S \) is a \((\alpha, \beta)\) NSBS of \(S \).

Proof. Let \(\{ V_i : i \in I \} \) be a family of \((\alpha, \beta)\) NSBS* of \(S \) and \(A = \bigcap_{i \in I} V_i \).

Let \(x \) and \(y \) in \(S \). Now,

\[
\max \{ \omega_A^T(x \diamond_1 y), \alpha \} = \inf_{i \in I} \max \{ \omega_{V_i}^T(x \diamond_1 y), \alpha \}
\]

\[
\geq \inf_{i \in I} \min \{ \omega_{V_i}^T(x), \omega_{V_i}^T(y), \beta \}
\]

\[
= \min \left\{ \inf_{i \in I} \omega_{V_i}^T(x), \inf_{i \in I} \omega_{V_i}^T(y), \beta \right\}
\]

\[
= \min \{ \omega_A^T(x), \omega_A^T(y), \beta \}.
\]

Similarly, \(\max \{ \omega_A^T(x \diamond_2 y), \alpha \} \geq \min \{ \omega_A^T(x), \omega_A^T(y), \beta \} \) and \(\max \{ \omega_A^T(x \diamond_3 y), \alpha \} \geq \min \{ \omega_A^T(x), \omega_A^T(y), \beta \} \). Now,

\[
\max \{ \omega_A^f(x \diamond_1 y), \alpha \} = \inf_{i \in I} \max \{ \omega_{V_i}^f(x \diamond_1 y), \alpha \}
\]

\[
\geq \inf_{i \in I} \min \left\{ \frac{\omega_{V_i}^f(x) + \omega_{V_i}^f(y)}{2}, \beta \right\}
\]

\[
= \min \left\{ \inf_{i \in I} \omega_{V_i}^f(x) + \inf_{i \in I} \omega_{V_i}^f(y), \beta \right\}
\]

\[
= \min \left\{ \frac{\omega_A^f(x) + \omega_A^f(y)}{2}, \beta \right\}.
\]

M.Palanikumar, K.Arulmozhi, \((\alpha, \beta)\) Neutrosophic Subsemiring of Bisemiring
Similarly, \(\max \{ \omega_A^I(x \circ_2 y), \alpha \} \geq \min \left\{ \frac{\omega_A^I(x) + \omega_A^I(y)}{2}, \beta \right\} \) and \(\max \{ \omega_A^A(x \circ_3 y), \alpha \} \geq \min \left\{ \frac{\omega_A^A(x) + \omega_A^A(y)}{2}, \beta \right\} \). Now,

\[
\min \{ \omega_A^\bullet(x \circ_1 y), \alpha \} = \sup_{i \in I} \min \left\{ \omega_A^i(x \circ_1 y), \alpha \right\} \\
\leq \sup_{i \in I} \max \left\{ \omega_A^i(x), \omega_A^i(y), \beta \right\} \\
= \max \left\{ \sup_{i \in I} \omega_A^i(x), \sup_{i \in I} \omega_A^i(y), \beta \right\} \\
= \max \{ \omega_A^\bullet(x), \omega_A^\bullet(y), \beta \}.
\]

Similarly, \(\min \{ \omega_A^\bullet(x \circ_2 y), \alpha \} \leq \max \{ \omega_A^\bullet(x), \omega_A^\bullet(y), \beta \} \) and
\(\min \{ \omega_A^\bullet(x \circ_3 y), \alpha \} \leq \max \{ \omega_A^\bullet(x), \omega_A^\bullet(y), \beta \} \).

Hence, \(A \) is a \((\alpha, \beta)\) NSBS of \(S \).

Theorem 4.4. If \(A \) and \(B \) are any two \((\alpha, \beta)\) NSBS* of \(S_1 \) and \(S_2 \) respectively, then \(A \times B \) is a \((\alpha, \beta)\) NSBS of \(S_1 \times S_2 \).

Proof. Let \(A \) and \(B \) be two \((\alpha, \beta)\) NSBS* of \(S_1 \) and \(S_2 \) respectively. Let \(x_1, x_2 \in S_1 \) and \(y_1, y_2 \in S_2 \). Then \((x_1, y_1)\) and \((x_2, y_2)\) are in \(S_1 \times S_2 \). Now

\[
\max \left\{ \omega_{A \times B}^T[(x_1, y_1) \circ_1 (x_2, y_2)], \alpha \right\} = \max \left\{ \omega_{A \times B}^T[(x_1, y_1) \circ_1 (x_2, y_2)], \alpha \right\} \\
= \min \left\{ \max \left\{ \omega_A^T(x_1 \circ_1 x_2), \alpha \right\}, \max \left\{ \omega_B^T(y_1 \circ_1 y_2), \alpha \right\} \right\} \\
\geq \min \left\{ \min \left\{ \omega_A^T(x_1), \omega_B^T(x_2), \beta \right\}, \min \left\{ \omega_A^T(y_1), \omega_B^T(y_2), \beta \right\} \right\} \\
= \min \left\{ \max \left\{ \omega_A^T(x_1), \omega_B^T(y_1), \beta \right\}, \max \left\{ \omega_A^T(x_2), \omega_B^T(y_2), \beta \right\} \right\} \\
= \min \left\{ \omega_{A \times B}^T(x_1, y_1), \omega_{A \times B}^T(x_2, y_2), \beta \right\}.
\]

Also, \(\max \left\{ \omega_{A \times B}^T[(x_1, y_1) \circ_2 (x_2, y_2)], \alpha \right\} \geq \min \left\{ \omega_{A \times B}^T(x_1, y_1), \omega_{A \times B}^T(x_2, y_2), \beta \right\} \) and
\(\max \left\{ \omega_{A \times B}^T[(x_1, y_1) \circ_3 (x_2, y_2)], \alpha \right\} \geq \min \left\{ \omega_{A \times B}^T(x_1, y_1), \omega_{A \times B}^T(x_2, y_2), \beta \right\} \).

Now, \(\max \left\{ \omega_{A \times B}^I[(x_1, y_1) \circ_1 (x_2, y_2)], \alpha \right\} \)

\[
= \max \left\{ \omega_{A \times B}^I[(x_1, y_1) \circ_1 (x_2, y_2)], \alpha \right\} \\
= \min \left\{ \frac{1}{2} \left[\max \left\{ \omega_A^I(x_1 \circ_1 x_2), \alpha \right\} + \max \left\{ \omega_B^I(y_1 \circ_1 y_2), \alpha \right\} \right] \right\} \\
\geq \min \left\{ \frac{1}{2} \left[\min \left\{ \frac{\omega_A^I(x_1) + \omega_A^I(x_2)}{2}, \beta \right\} + \min \left\{ \frac{\omega_B^I(y_1) + \omega_B^I(y_2)}{2}, \beta \right\} \right] \right\} \\
= \min \left\{ \frac{1}{2} \left[\omega_A^I(x_1) + \omega_B^I(y_1) + \omega_A^I(x_2) + \omega_B^I(y_2) \right], \beta \right\} \\
= \min \left\{ \omega_{A \times B}^I(x_1, y_1) + \omega_{A \times B}^I(x_2, y_2), \beta \right\}.
\]

M.Palanikumar, K.Arulmozhi, \((\alpha, \beta)\) Neutrosophic Subbisemiring of Bisemiring
Also, \[\max \left\{ \varpi^{f}_{A \times B}[(x_1, y_1) \odot_2 (x_2, y_2)], \alpha \right\} \geq \min \left\{ \frac{\varpi^{f}_{A \times B}(x_1, y_1) + \varpi^{f}_{A \times B}(x_2, y_2)}{2}, \beta \right\} \]

\[
\max \left\{ \varpi^{f}_{A \times B}[(x_1, y_1) \odot_3 (x_2, y_2)], \alpha \right\} \geq \min \left\{ \frac{\varpi^{f}_{A \times B}(x_1, y_1) + \varpi^{f}_{A \times B}(x_2, y_2)}{2}, \beta \right\}.
\]

Similarly,

\[
\min \left\{ \varpi^{f}_{A \times B}[(x_1, y_1) \odot_1 (x_2, y_2)], \alpha \right\} = \min \left\{ \varpi^{f}_{A \times B}(x_1 \odot_1 x_2, y_1 \odot_1 y_2), \alpha \right\}
= \max \left\{ \min \left\{ \varpi^{f}_{A}(x_1 \odot_1 x_2), \alpha \right\}, \min \left\{ \varpi^{f}_{B}(y_1 \odot_1 y_2), \alpha \right\} \right\}
\leq \max \left\{ \max \left\{ \varpi^{f}_{A}(x_1), \varpi^{f}_{A}(x_2), \beta \right\}, \max \left\{ \varpi^{f}_{B}(y_1), \varpi^{f}_{B}(y_2), \beta \right\} \right\}
= \max \left\{ \{\max \left\{ \varpi^{f}_{A}(x_1), \varpi^{f}_{B}(y_1) \right\}, \max \left\{ \varpi^{f}_{A}(x_2), \varpi^{f}_{B}(y_2) \right\} \}, \beta \right\}
= \max \left\{ \varpi^{f}_{A \times B}(x_1, y_1), \varpi^{f}_{A \times B}(x_2, y_2), \beta \right\}.
\]

Also, \[\min \left\{ \varpi^{f}_{A \times B}[(x_1, y_1) \odot_2 (x_2, y_2)], \alpha \right\} \leq \max \left\{ \varpi^{f}_{A \times B}(x_1, y_1), \varpi^{f}_{A \times B}(x_2, y_2), \beta \right\}, \]

\[
\min \left\{ \varpi^{f}_{A \times B}[(x_1, y_1) \odot_3 (x_2, y_2)], \alpha \right\} \leq \max \left\{ \varpi^{f}_{A \times B}(x_1, y_1), \varpi^{f}_{A \times B}(x_2, y_2), \beta \right\}.
\]

Hence \(A \times B \) is a \((\alpha, \beta)\) NSBS of \(S_1 \times S_2 \).

Corollary 4.5. If \(A_1, A_2, ..., A_n \) are the family of \((\alpha, \beta)\) NSBS of \(S_1, S_2, ..., S_n \) respectively, then \(A_1 \times A_2 \times ... \times A_n \) is a \((\alpha, \beta)\) NSBS of \(S_1 \times S_2 \times ... \times S_n \).

Definition 4.6. Let \(A \) be a \((\alpha, \beta)\) neutrosophic subset in \(S \), the strongest \((\alpha, \beta)\) neutrosophic relation on \(S \), that is a \((\alpha, \beta)\) neutrosophic relation on \(A \) is \(V \) given by

\[
\begin{align*}
\max \left\{ \varpi^{T}_{\alpha}(x, y), \alpha \right\} &= \min \left\{ \varpi^{T}_{\alpha}(x), \varpi^{T}_{\beta}(y), \beta \right\} \\
\max \left\{ \varpi^{T}_{\alpha}(x, y), \alpha \right\} &= \min \left\{ \varpi^{T}_{\beta}(x), \varpi^{T}_{\alpha}(y), \beta \right\} \\
\min \left\{ \varpi^{T}_{\beta}(x, y), \alpha \right\} &= \max \left\{ \varpi^{T}_{\alpha}(x), \varpi^{T}_{\beta}(y), \beta \right\}.
\end{align*}
\]

Theorem 4.7. Let \(A \) be a \((\alpha, \beta)\) NSBS of \(S \) and \(V \) be the strongest \((\alpha, \beta)\) neutrosophic relation of \(S \). Then \(A \) is a \((\alpha, \beta)\) NSBS of \(S \) if and only if \(V \) is a \((\alpha, \beta)\) NSBS of \(S \times S \).

Theorem 4.8. Let \((S_1, \mathbb{R}_1, \mathbb{R}_2, \mathbb{R}_3)\) and \((S_2, \mathbb{R}_1, \mathbb{R}_2, \mathbb{R}_3)\) be any two bisemirings. The homomorphic image of \((\alpha, \beta)\) NSBS of \(S_1 \) is a \((\alpha, \beta)\) NSBS of \(S_2 \).

Proof. Let \(\Delta : S_1 \rightarrow S_2 \) be any homomorphism. Then \(\Delta(x \boxplus_1 y) = \Delta(x) \boxplus_1 \Delta(y), \Delta(x \boxplus_2 y) = \Delta(x) \boxplus_2 \Delta(y) \) and \(\Delta(x \boxplus_3 y) = \Delta(x) \boxplus_3 \Delta(y) \) for all \(x, y \in S_1 \). Let \(V = \Delta(A) \), A is any \((\alpha, \beta)\) NSBS of \(S_1 \). Let \(\Delta(x), \Delta(y) \in S_2 \). Let \(x \in \Delta^{-1}(\Delta(x)) \) and \(y \in \Delta^{-1}(\Delta(y)) \) be such that \[
\varpi^{T}_{\alpha}(x) = \sup_{z \in \Delta^{-1}(\Delta(x))} \varpi^{T}_{\alpha}(z) \] and \(\varpi^{T}_{\alpha}(y) = \sup_{z \in \Delta^{-1}(\Delta(y))} \varpi^{T}_{\alpha}(z) \). Now,

\[
\max \left[\sup_{z \in \Delta^{-1}(\Delta(x) \boxplus_1 \Delta(y))} \varpi^{T}_{\alpha}(z), \alpha \right]
= \max \left[\sup_{z \in \Delta^{-1}(\Delta(x) \boxplus_1 \Delta(y))} \varpi^{T}_{\alpha}(z'), \alpha \right]
= \max \left[\sup_{z \in \Delta^{-1}(\Delta(x) \boxplus_1 \Delta(y))} \varpi^{T}_{\alpha}(z'), \alpha \right]
\]

M.Palanikumar, K.Arunmozhi, \((\alpha, \beta)\) Neutrosophic Subbisemiring of Bisemiring
Thus, \(\max \left[\varpi_F^T (\Delta(x) \ominus_1 \Delta(y)), \alpha \right] \geq \min \left\{ \varpi_F^T (x), \varpi_F^T (y), \beta \right\} \)
\(= \min \left\{ \varpi_F^T (\Delta(x), \varpi_F^T (\Delta(y), \beta) \right\}. \)

Similarly, \(\max \left[\varpi_F^T (\Delta(x) \ominus_2 \Delta(y)), \alpha \right] \geq \min \left\{ \varpi_F^T (x), \varpi_F^T (y), \beta \right\} \)
\(= \min \left\{ \varpi_F^T (\Delta(x), \varpi_F^T (\Delta(y), \beta) \right\}. \)

Let \(\Delta(x), \Delta(y) \in S_2 \). Let \(x \in \Delta^{-1}(\Delta(x)) \) and \(y \in \Delta^{-1}(\Delta(y)) \) be such that \(\varpi_A^I (x) = \sup_{z \in \Delta^{-1}(\Delta(x))} \varpi_A^I (z) \) and \(\varpi_A^I (y) = \sup_{z \in \Delta^{-1}(\Delta(y))} \varpi_A^I (z) \).

Thus, \(\max \left[\varpi_F^T (\Delta(x) \ominus_1 \Delta(y)), \alpha \right] \geq \min \left\{ \frac{\varpi_F^T (\Delta(x)) + \varpi_F^T (\Delta(y))}{2}, \beta \right\}. \)

Similarly, \(\max \left[\varpi_F^T (\Delta(x) \ominus_2 \Delta(y)), \alpha \right] \geq \min \left\{ \frac{\varpi_F^T (\Delta(x)) + \varpi_F^T (\Delta(y))}{2}, \beta \right\} \)
\(= \min \left\{ \varpi_F^T (\Delta(x), \varpi_F^T (\Delta(y), \beta) \right\}. \)

Let \(x \in \Delta^{-1}(\Delta(x)) \) and \(y \in \Delta^{-1}(\Delta(y)) \) be such that \(\varpi_A^I (x) = \inf_{z \in \Delta^{-1}(\Delta(x))} \varpi_A^I (z) \) and \(\varpi_A^I (y) = \inf_{z \in \Delta^{-1}(\Delta(y))} \varpi_A^I (z) \). Now,

\(\min \left[\varpi_F^T (\Delta(x) \ominus_1 \Delta(y)), \alpha \right] = \min \left[\inf_{z \in \Delta^{-1}(\Delta(x) \ominus_1 \Delta(y))} \varpi_A^I (z'), \alpha \right] \)
\(= \min \left[\inf_{z \in \Delta^{-1}(\Delta(x) \ominus_1 \Delta(y))} \varpi_A^I (z'), \alpha \right] \)
\(= \min \left[\varpi_A^I (x \oplus_1 y), \alpha \right] \)
\(\leq \max \left\{ \varpi_A^I (x), \varpi_A^I (y), \beta \right\} \)
\(= \max \left\{ \varpi_A^I (\Delta(x), \varpi_A^I (\Delta(y), \beta) \right\}. \)

M.Palanikumar, K.Arunmozhi, \((\alpha, \beta)\) Neutrosophic Subbisemiring of Bisemiring
Thus, \(\min \left[\varpi^T_A(\Delta(x) \boxplus_1 \Delta(y)), \alpha \right] \leq \max \left\{ \varpi^T_A(\Delta(x)), \varpi^T_A(\Delta(y)), \beta \right\} \).
Similarly, \(\min \left[\varpi^I_A(\Delta(x) \boxplus_2 \Delta(y)), \alpha \right] \leq \max \left\{ \varpi^I_A(\Delta(x)), \varpi^I_A(\Delta(y)), \beta \right\} \) and
\(\min \left[\varpi^F_A(\Delta(x) \boxplus_3 \Delta(y)), \alpha \right] \leq \max \left\{ \varpi^F_A(\Delta(x)), \varpi^F_A(\Delta(y)), \beta \right\} \). Hence \(V \) is a \((\alpha, \beta)\) NSBS of \(S_2 \).

Theorem 4.9. Let \((S_1, \boxplus_1, \boxplus_2, \boxplus_3) \) and \((S_2, \boxplus_1, \boxplus_2, \boxplus_3) \) be any two bisemirings. The homomorphic preimage of \((\alpha, \beta)\) NSBS of \(S_2 \) is a \((\alpha, \beta)\) NSBS of \(S_1 \).

Proof. Let \(\Delta : S_1 \rightarrow S_2 \) be any homomorphism. Then \(\Delta(x \boxplus_1 y) = \Delta(x) \boxplus_1 \Delta(y), \Delta(x \boxplus_2 y) = \Delta(x) \boxplus_2 \Delta(y) \) and \(\Delta(x \boxplus_3 y) = \Delta(x) \boxplus_3 \Delta(y) \) for all \(x, y \in S_1 \). Let \(V = \Delta(A) \), where \(V \) is any \((\alpha, \beta)\) NSBS of \(S_2 \). Let \(x, y \in S_1 \). Then \(\max \{ \varpi^T_A(x \boxplus_1 y), \alpha \} = \max \{ \varpi^T_A(\Delta(x \boxplus_1 y)), \alpha \} \geq \min \{ \varpi^T_A(\Delta(x)), \varpi^T_A(\Delta(y)), \beta \} = \min \{ \varpi^T_A(x), \varpi^T_A(y), \beta \} \). Thus, \(\max \{ \varpi^T_A(x \boxplus_1 y), \alpha \} \geq \min \{ \varpi^T_A(x), \varpi^T_A(y), \beta \} \).

5. \((\alpha, \beta)\) neutrosophic Normal Subbisemiring

In this section, we interact the theory for \((\alpha, \beta)\)- neutrosophic normal subbisemiring. Here NNSBS stands for neutrosophic normal subbisemiring.

Definition 5.1. Let \(A \) be any neutrosophic subset of \(S \) is said to be a NNSBS of \(S \) if it satisfies the following conditions:

\[
\begin{align*}
\varpi^T_A(x \circ_1 y) &= \varpi^T_A(y \circ_1 x) \\
\varpi^T_A(x \circ_2 y) &= \varpi^T_A(y \circ_2 x) \\
\varpi^T_A(x \circ_3 y) &= \varpi^T_A(y \circ_3 x)
\end{align*}
\]

\[
\begin{align*}
\varpi^I_A(x \circ_1 y) &= \varpi^I_A(y \circ_1 x) \quad \text{OR} \\
\varpi^I_A(x \circ_2 y) &= \varpi^I_A(y \circ_2 x) \quad \text{OR} \\
\varpi^I_A(x \circ_3 y) &= \varpi^I_A(y \circ_3 x)
\end{align*}
\]

\[
\begin{align*}
\varpi^F_A(x \circ_1 y) &= \varpi^F_A(y \circ_1 x) \\
\varpi^F_A(x \circ_2 y) &= \varpi^F_A(y \circ_2 x) \\
\varpi^F_A(x \circ_3 y) &= \varpi^F_A(y \circ_3 x)
\end{align*}
\]

for all \(x, y \in S \).

Theorem 5.2. (i) The intersection of a family of NNSBS \(s \) of \(S \) is a NNSBS* of \(S \).

(ii) The intersection of a family of \((\alpha, \beta)\) NNSBS of \(S \) is a \((\alpha, \beta)\) NNSBS \(s \) of \(S \).

Proof. Proof follows from Theorem 3.3 and Theorem 4.3.

M.Palanikumar, K.Arunmozhi, \((\alpha, \beta)\) Neutrosophic Subbisemiring of Bisemiring
Theorem 5.3. (i) If $A_1, A_2, ..., A_n$ are the family of NNSBSs of $S_1, S_2, ..., S_n$ respectively, then $A_1 \times A_2 \times ... \times A_n$ is a NNSBS of $S_1 \times S_2 \times ... \times S_n$.

(ii) If $A_1, A_2, ..., A_n$ are the family of (α, β) NNSBSs of $S_1, S_2, ..., S_n$ respectively, then $A_1 \times A_2 \times ... \times A_n$ is a (α, β) NNSBS of $S_1 \times S_2 \times ... \times S_n$.

Proof. Proof follows from Theorem 3.4 and Theorem 4.4.

Theorem 5.4. (i) Let A be any NNSBS of S and V be the strongest neutrosophic relation of S. Then A is a NNSBS of S if and only if V is a NNSBS of $S \times S$.

(ii) Let A be any (α, β) NNSBS of S and V be the strongest (α, β) neutrosophic relation of S. Then A is a (α, β) NNSBS of S if and only if V is a (α, β) NNSBS of $S \times S$.

Proof. Proof follows from Theorem 3.7.

Theorem 5.5. Let $(S_1, \oplus_1, \oplus_2, \oplus_3)$ and $(S_2, \square_1, \square_2, \square_3)$ be any two bisemirings.

(i) The homomorphic image of any NNSBS of S_1 is a NNSBS of S_2.

(ii) The homomorphic image of any (α, β) NNSBS of S_1 is a (α, β) NNSBS of S_2.

Proof. Proof follows from Theorem 3.12 and Theorem 4.8.

Theorem 5.6. Let $(S_1, \oplus_1, \oplus_2, \oplus_3)$ and $(S_2, \square_1, \square_2, \square_3)$ be any two bisemirings.

(i) The homomorphic preimage of any NNSBS of S_2 is a NNSBS of S_1.

(ii) The homomorphic preimage of any (α, β) NNSBS of S_2 is a (α, β) NNSBS of S_1.

Proof. Proof follows from Theorem 3.13 and Theorem 4.9.

Acknowledgments: The authors would like to thank the Editor-In-Chief and the anonymous referees for their various suggestions and helpful comments that have led to the improved in the quality and clarity version of the paper.

Conflicts of Interest: The author declares no conflict of interest.

References

8. Palanikumar, M.; Arulmozhi, K.; On Intuitionistic Fuzzy Normal Subbisemiring of Bisemiring, Nonlinear Studies, Accepted.

Received: Nov 19, 2021. Accepted: Feb 7, 2022