A new servicizing business model of transportation: Comparing the new and existing alternatives via neutrosophic Analytic Hierarchy Process

Saliha Karadayi-Usta

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact disc@unm.edu.
A new servicizing business model of transportation: Comparing the new and existing alternatives via neutrosophic Analytic Hierarchy Process

Saliha Karadayi-Usta* 1

1* Fenerbahce University; salihakaradayiusta@gmail.com, saliha.usta@fbu.edu.tr

* Correspondence: salihakaradayiusta@gmail.com

Abstract: The new normal of the world has been shaped by the COVID-19 outbreak by avoiding public transportation in order to prevent the spread of the disease. Due to the high financial burden of purchasing a car, new business models have been developed in order to make possible of utilizing vehicles to meet the transportation needs in pay-per-use base concept called “servicizing” or “servicization” which is based on presenting a product as a service, and selling the functionality of that product instead of the product itself. In order to meet the increasing demand for individual vehicle use, the existing car rental service providers have provided a new mobile application controlled business model which makes the rental process easier. The aim of this study is to evaluate the customers’ preferences of purchasing, renting through an agency, or mobile application supported new pay-as-you-go business model use, in order to determine which criterion is prominent in the decision-making process, and to identify the weights of these criteria. Due to the uncertain and indeterminate attitudes of the customers in decision making, the data were collected as neutrosophic data sets and analyzed with a novel neutrosophic Analytic Hierarchy Process (nAHP) approach. The study provides implications both theoretically and practically in terms of revealing new servicization possibilities and analyzing real user judgments.

Keywords: servicization; servicizing business model; car sharing program; neutrosophic sets; neutrosophic Analytic Hierarchy Process.

1. Introduction

Circular Economy which based upon the reuse, remanufacture and recycling of the products is a well-known and well-accepted movement of sustainable operations management research [1]. The servicizing business models, i.e. servicization or product-as-a-service concept, grounds on selling the functionality of a product / item / device instead of selling the product itself to the customers. This is a phenomenon converting the products into services [2], or transforming the consumers into users [3] by bringing the functionalization into the forefront. In this case, companies don’t transfer the product ownership to the customers, instead, they charge the them in pay-per-use base.

Servicizing business models have been drawn attention with its sustainable and environmental side owing to the durability and reliability requirement of these repeatedly in use products, and they have been defined as an “opportunity to research” [1] in the literature. Besides, the companies have made serious investments for this business model recently [4]. However, the COVID-19 pandemic has caused a serious decrease in individual purchasing power, and the companies have developed a
new servicization versions in order to minimize the face-to-face communication and contracting process with an easier way of payment via mobile applications.

This change in the way of business has motivated this research to analyze the customer perception and attitude towards different individual transportation options. Hence, this study aims to develop a decision model for evaluating the customers’ decisions on purchasing, renting through an agency (walk-in or using the website of provider or a website comparing all providers), or new mobile application controlled way of renting alternatives of driving in order to determine which criterion is more important in the decision-making process, and to identify the weights of these criteria.

Since the decision criteria have often vague, uncertain, indeterminate or inconsistent information, the data were collected as neutrosophic data sets from the real customers having experiences in both purchasing, renting through an agency and renting through the mobile application alternatives were analyzed with a neutrosophic AHP approach. The fuzzy AHP provides a wide range of application areas and remarkable results for many sectors [5-9]. The study provides theoretical and practical implications by revealing new servicization alternatives and analyzing real customer attitudes.

The literature points out that there is an obvious research gap in the field of study [42-46]. The researchers investigating and doing research on this topic especially for the sake of sustainability. The topic is important owing to the significance of achieving sustainable supplier selection, green supply chain management practices, and sustainability evaluation of transportation technologies.

This study introduces a new way of servicizing business model as a contribution to the literature with real customer preferences shaping the decision making process. The analysis results addressed the weights of criteria and alternative ranking by real user preferences.

The following sections include literature review, objective of the study, methodology, analysis and conclusion parts.

2. Materials and Methods

2.1. Literature Review

Current servicization literature focuses on the intensions of the organizations towards servicizing [10-12], product-as-a-service [13], device-as-a-service [3, 14], the potential of Industry 4.0 adoption in servicizing [15-16].

There are successful examples in servicization such as Xerox printing services, Runway car rental, Michelin fleet solutions, Philips’ lighting solutions, Rolls-Royce’s total care solutions [17], and Bundles’ household appliance services [1].

Servicization studies implementing AHP discuss construction servicization [18], design requirements for plumbing services [19], prioritization of product-service business model elements at aerospace industry [20], and cloud manufacturing [21]. Moreover, there are Neutrosophic AHP papers addressing system selection [22-23], AHP-SWOT analysis for strategic planning and decision-making [24], AHP and TOPSIS framework [25], AHP and DEA methodology [26], and performance analysis [27], comparative analysis of AHP, FAHP and Neutrosophic-AHP [41].

However, the new mobile application driven pay-as-you-go model of servicization research is missing in the literature. Besides, there are limited number of AHP studies applied neutrosophic sets. Therefore, the priorities of the customers having experiences in both purchasing and renting cars will be examined in this study with neutrosophic sets in order to serve as a good example of neutrosophic AHP for servicizing.

2.2. Methodology
The evaluation criteria that the real customers consider in transportation through driving alternatives have been specified via an in-depth interview with a car rental service provider X representative. The model is based on the literature review and information provided by the company X representative. The goal, criteria and alternatives are presented in Figure 1.

![Figure 1. Developed AHP model.](image)

The cost criterion includes the sub criteria of possessing cost by purchasing or renting payment [28], maintenance / repair cost [29], tax / insurance cost [30]. The parking criterion consists of two sub criteria such as accessing the car and finding it where you left, and leaving the car wherever you want [31]. The transaction criterion refers to receiving the car from the service provider, and leaving it to again the service provider [32]. Moreover, the risk criterion forms from hygiene sub criterion due to the COVID-19 pandemics, and the high possibility of car breakdown due to the repeated and extreme use [33].

In order to obtain the customer judgements, a user survey has been used, and neutrosophic sets have been used to gather the preferences. The experts were selected from the car rental service provider X's real users who had comments about the mobile application in the website of the company. 36 users were identified as candidate experts, and just 3 of them accepted to state their opinions.

2.2.1. Preliminaries

Neutrosophic sets (NSs) are proposed by Smarandache [34] as a general form of fuzzy sets and intuitionistic fuzzy set. This is a powerful technique to handle incomplete, indeterminate and inconsistent information that is valid in the real world applications. Besides, there are many neutrosophic sets: single valued, interval-valued, multi-valued, bipolar, hesitant, refined, simplified, rough and hyper-complex neutrosophic sets [35]. Basic definitions and operations of neutrosophic sets:

Definition 1. A neutrosophic set A in E (let E be a universe) is characterized by a truth-membership function $T_A(x)$, an indeterminacy-membership function $I_A(x)$, and a falsity-membership function $F_A(x)$ where $x \in E$.

Saliha Karadayi-Usta, A new servicizing business model of transportation: Comparing the new and existing alternatives via neutrosophic Analytic Hierarchy Process
A can be defined as $A=\{(x, T_A(x), I_A(x), F_A(x) \mid x \in E\}$

where $T_A(x), I_A(x), F_A(x) \in [0,1]$ such that $0 \leq T_A(x), I_A(x), F_A(x) \leq 3$.

Definition 2. A single-valued neutrosophic set A is a subclass of NS and is stated as $A=\{(x, T_A(x), I_A(x), F_A(x) \mid x \in E\}$ where $T_A, I_A, F_A: X \rightarrow [0,1]$ such that $0 \leq T_A(x) + I_A(x) + F_A(x) \leq 3$.

In particular, if E has only 1 element, A is called a simplified neutrosophic number (SNN), which is represented as $A=\langle T_A, I_A, F_A \rangle$ [36].

Definition 3. Let A and B be two SNN, and $p(A)$ be the complement of A, the following operations are valid [22, 36].

\[
A \oplus B=(T_A + T_B - T_A \cdot T_B, I_A + I_B - I_A \cdot I_B, F_A + F_B - F_A \cdot F_B)
\]

\[
A \Delta B=(T_A - I_A - F_A, I_A - T_A - F_A, F_A - T_A - I_A)
\]

\[
a A = \left(1-\left(1-T_A\right)^{1/\alpha}, I_A^{1/\alpha}, F_A^{1/\alpha}\right), \alpha > 0
\]

\[
p(A) = \left(1 - I_A, 1 - I_A, T_A\right)
\]

Definition 4. The score function is defined as $s(A) = (2 + T_A - I_A - F_A) / 3$ for a SNN to deneutrosophicate or rank [35].

Definition 5. Geometric means are defined as [26]:

\[
T_1 = [1 \times T_{12} \times \ldots \times T_{1n}]^{1/n}, \ldots, T_n = [T_{1n} \times \ldots \times 1]^{1/n}
\]

\[
I_1 = [1 \times I_{12} \times \ldots \times I_{1n}]^{1/n}, \ldots, I_n = [I_{1n} \times \ldots \times 1]^{1/n}
\]

\[
F_1 = [1 \times F_{12} \times \ldots \times F_{1n}]^{1/n}, \ldots, F_n = [F_{1n} \times \ldots \times 1]^{1/n}
\]

Definition 6. Aggregation formula is [35]: $F_w(A_1, A_2, \ldots, A_n) = (1 - \prod_{j=1}^{n} \left(1 - \ T_{Aj}(x)\right)^{w_j}), 1 - \prod_{j=1}^{n} \left(1 - \ I_{Aj}(x)\right)^{w_j}}$, $1 - \prod_{j=1}^{n} \left(1 - \ F_{Aj}(x)\right)^{w_j})$ where $W = (w_1, w_2, \ldots, w_n)$ is the weight vector of $A_i (j = 1, 2, \ldots, n), w_j \in [0,1]$ and $\sum_{j=1}^{n} w_j = 1$.

The truth-membership T_A stands for “the possibility in which the statement is true”, the indeterminacy-membership I_A is “the degree in which he/she is not sure”, and the falsity-membership F_A means that “the statement is false” [37].

All of the above definitions will be applied to the proposed nAHP methodology in the following sections.

2.2.2. Procedure in Gathering and Aggregating the Individual Evaluations

There are different proposed scales for the neutrosophic linguistic variable such as [22] and [26]. However, there is also a fair criticism for these scales due to the defined structure of them. For example, the aforementioned Radwan et al. [22] scale defines “extremely highly preferred” as <.9.1. The truth-membership can be thought as the reverse of falsity-membership; this is acceptable by definition. However, since the indeterminacy means “the degree in which one is not sure”, we cannot define this indeterminacy proportional to the truth-membership value with a scale.
Participants should express “the degree in which he/she is not sure”. Therefore, this study gathers the truth and indeterminacy values separately from the participants instead of using these defined tables in order to deal with this criticism.

In order to aggregate the individual neutrosophic evaluations into group evaluations, the captured expert opinions have been processed with the proposed formula of [26] (the definition 6). There are nAHP papers use the neutrosophic weighted arithmetic average aggregation operator of [37], such as [38]. However, since the average operator is problematic in terms of finding reciprocals, this study prefers to adopt a geometric mean based formulation in aggregating the expert opinions.

2.2.3. Steps of the Methodology

The steps of the nAHP used in this study:

Step 1. Defining the problem, criteria and alternatives with a structured hierarchy.
Step 2. Gathering the expert evaluations by taking truth- and indeterminacy-membership values separately via a survey in order to obtain pairwise comparisons of criteria and alternatives.
Step 3. Checking the consistency of pairwise matrices by Eigenvector solution.
Step 4. Aggregating the individual evaluations into group decision.
Step 5. Obtaining the weights of each criteria. Repeating these steps for the alternatives' pairwise comparisons.
Step 6. Ranking the alternatives with respect to the calculated weights.

3. Application

The defined problem with criteria and alternatives in a structured hierarchy is provided in Figure 1 previously by fulfilling the Step 1.

Step 2. The user survey provided real users’ judgements on the goal “transportation via car” and the alternative ways of transportation. Table 1 presents the individual judgements of the experts.

| Table 1. Pairwise comparison matrix with respect to goal by experts. |
|-----------------|-------|-------|-------|-------|
| Expert # | Cost | Parking | Transactions | Risks |
| 1 | <.5.5.5> | <.7.2.3> | <.7.2.3> | <.4.7.6> |
| 2 | <.5.5.5> | <.9.1.1> | <.9.1.1> | <.9.1.1> |
| 3 | <.5.5.5> | <.9.1.1> | <.9.1.1> | <.7.2.3> |
| Parking | 1 | <.3.8.7> | <.5.5.5> | <.7.2.3> | <.3.8.7> |
| 2 | <.1.9.9> | <.5.5.5> | <.9.1.1> | <.6.2.4> |
| 3 | <.1.9.9> | <.5.5.5> | <.8.1.2> | <.5.1.5> |
| Transactions | 1 | <.3.8.7> | <.3.8.7> | <.5.5.5> | <.2.8.8> |
| 2 | <.1.9.9> | <.1.9.9> | <.5.5.5> | <.9.1.1> |
| 3 | <.1.9.9> | <.2.9.8> | <.5.5.5> | <.7.1.3> |
| Risks | 1 | <.6.3.4> | <.7.2.3> | <.8.2.2> | <.5.5.5> |
| 2 | <.1.9.9> | <.4.8.6> | <.1.9.9> | <.5.5.5> |
| 3 | <.3.8.7> | <.5.9.5> | <.3.9.7> | <.5.5.5> |

Step 3. The consistency was checked with the score function value definition for each participant evaluations via Eigenvector solution procedure [39].
The score function was applied to deneutrosophicate the evaluations into crisp values. The sum of each column was taken, next, each element of the matrix was divided into the sum of its columns in order to have normalized relative weights. Then, the normalized principal Eigenvector (also called priority vector) is obtained by averaging across the rows. This calculation provides the experts’ priorities with respect to goal. For example, while the risk criterion is the priority of the expert 1, cost criterion is the most important criteria for expert 2 and 3. Besides of the relative weight calculation, this procedure paves the way for checking the consistency of participants’ answers. Here, one needs Principal Eigen value (λ_{max}) obtaining from summation of products between each element of Eigen vector and sum of columns of the reciprocal matrix. Table 2 states the score function values, normalization, weights and Principal Eigen value.

The largest Eigen value equals to the size of comparison matrix, or $\lambda_{\text{max}} = n$ [40], which gives a measure of consistency named Consistency Index (CI = $(\lambda_{\text{max}} - n)/(n-1)$). The CI values should be compared with Random Consistency Index as a previously defined index of sample size 500, and RI is 0.89 for n=4 (4×4 matrix). The Consistency Ratio CR was calculated (CR = CI / RI), and if the CR is ≤ 10% in comparison with the CI, the inconsistency is acceptable. Accordingly, while the evaluations of expert 1 and 3 are within the acceptable inconsistency limits, the evaluations of expert 2 cannot be taken into consideration due to the CR = 23%.

Table 2. Score function values, normalization, weights and principal Eigen value.

<table>
<thead>
<tr>
<th>wrt. Goal</th>
<th>Score function values</th>
<th>x / sum values</th>
<th>w</th>
<th>Row average</th>
<th>λ_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>C: 0.500 0.733 0.367</td>
<td>0.300 0.238 0.265 0.275</td>
<td>0.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P: 0.267 0.500 0.267</td>
<td>0.160 0.224 0.265 0.220</td>
<td>0.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T: 0.267 0.267 0.200</td>
<td>0.160 0.119 0.181 0.150</td>
<td>0.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R: 0.633 0.733 0.500</td>
<td>0.380 0.328 0.289 0.375</td>
<td>0.343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1.667 2.233 2.767 1.333</td>
<td>1 1 1 1</td>
<td>3.681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>C: 0.500 0.900 0.900</td>
<td>0.313 0.429 0.338 0.303</td>
<td>0.345</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P: 0.367 0.500 0.667</td>
<td>0.229 0.238 0.338 0.225</td>
<td>0.257</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T: 0.367 0.367 0.900</td>
<td>0.229 0.175 0.188 0.303</td>
<td>0.224</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R: 0.367 0.333 0.500</td>
<td>0.229 0.159 0.138 0.169</td>
<td>0.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1.600 2.100 2.667 2.967</td>
<td>1 1 1 1</td>
<td>4.409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>C: 0.500 0.900 0.733</td>
<td>0.333 0.466 0.365 0.278</td>
<td>0.361</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P: 0.367 0.500 0.633</td>
<td>0.244 0.259 0.338 0.241</td>
<td>0.270</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T: 0.367 0.167 0.500</td>
<td>0.244 0.086 0.203 0.291</td>
<td>0.206</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R: 0.267 0.367 0.500</td>
<td>0.178 0.190 0.095 0.190</td>
<td>0.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1.500 1.933 2.467 2.633</td>
<td>1 1 1 1</td>
<td>4.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 4. In order to aggregate the individual evaluations into group decision, the aggregation definition 6 was used (see Table 3).
Step 5. The weights of each criterion were obtained, and the step was repeated for the alternatives’ and sub-criteria’s pairwise comparisons.

Step 6. The alternatives were ranked with respect to the calculated weights.

According to the analysis results, renting through an agency was the most preferred alternative in terms of the cost criterion. Secondly the new system, and then the purchasing option was preferred by the weight values. When the parking criterion was considered, the ranking was purchasing, renting through an agency and new system, respectively. Similarly, in case we had a focus on the transactions, the same ranking was valid. However, participants addressed the new system as the most risky alternative, next renting through an agency and then the purchasing option, respectively.

Table 3. Aggregating the individual evaluations into group decision.

<table>
<thead>
<tr>
<th>wrt. Goal</th>
<th>Cost</th>
<th>Parking</th>
<th>Transactions</th>
<th>Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>I</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>Cost</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>Parking</td>
<td>0,1</td>
<td>0,3</td>
<td>0,6</td>
<td>0,3</td>
</tr>
<tr>
<td>Transactions</td>
<td>0,1</td>
<td>0,2</td>
<td>0,5</td>
<td>0,1</td>
</tr>
<tr>
<td>Risks</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,4</td>
</tr>
</tbody>
</table>

The sub criteria analysis revealed that there was a tax/insurance, maintenance/repair cost, and possession cost sequence with respect to cost criterion. Moreover, “hygiene problem” sub criterion had a greater importance than the “high possibility of car breakdown due to the repeated and extreme use” in terms of risks criterion. Besides, the “accessing the car, finding it where you left” sub criterion and the “leaving the car wherever you want” sub criterion had close weights as 0.51 and 0.49.

When the criteria weights and alternatives were combined, this analysis resulted that the effect of alternatives on the goal was identified with the weights as renting through an agency (0.358), purchasing option (0.326), and the new system (0.316).

4. Conclusions

This study introduces a new way of servicizing business model as a contribution to the literature with real customer preferences shaping the decision making process. The analysis results addressed the weights of criteria and alternative ranking by real user preferences.

The cost, parking, transactions and risks parameters have been investigated via a user survey provided real users’ judgements on the goal “transportation via car” and the alternative ways of transportation. The results point out that:

- Renting through an agency was the most preferred alternative in terms of the cost criterion.
- Secondly the new system, and then the purchasing option was preferred by the weight values.
- When the parking criterion was considered, the ranking was purchasing, renting through an agency and new system, respectively.
- Similarly, in case we had a focus on the transactions, the same ranking was valid.
- However, participants addressed the new system as the most risky alternative, next renting through an agency and then the purchasing option, respectively.

As a theoretical implication, this study tries to handle the criticism of previously defined linguistic variable tables by a different way of data gathering. In addition, the study adopts the score functions to defuzzify the fuzzy sets in analysis procedure as a new approach.
The practical implications of the paper provide a real world customer preference point of view for the industry representatives. Since the new normal of the world requires new way of business models, this analysis addresses new initiatives to overcome the burden of this hard time. One can infer from these results that the companies can introduce new way servicization by taking the defined significant criteria into consideration.

The number of company representatives, number of participants, and the possibility of biased attitudes of the both these representatives and the participants are the main limitations of this study. Hence, this study tries to select the real participants who have experienced these services previously in order to reflect the real world case. In addition, the participants were asked whether they are willing to participate the survey, or they are feeling obliged at the beginning of the survey questions.

Furthermore, this paper serves both theoretical implications by using the neutrosophic sets to AHP and practical implications by presenting the real user priorities. One can infer from the study to understand which criteria is prominent in contrast with the others, and the theoretical background can be applied to different decision making problems. Further researches may have a large number of participants and representatives, or different mathematical assumptions can be utilized in the calculations. This study differs from the existing ones by gathering the indeterminacy values of neutrosophic sets by the participants instead of using the defined linguistic variable tables.

Conflicts of Interest: The authors declare no conflict of interest.

References

Saliha Karadayi-Usta, A new servicizing business model of transportation: Comparing the new and existing alternatives via neutrosophic Analytic Hierarchy Process