Automated Stategraft: Electronic Enforcement Technology and the Economic Predation of Black Communities

Sonia Gipson Rankin
University of New Mexico - School of Law

Melanie E. Moses
Department of Computer Science, University of New Mexico, Albuquerque, United States.

Kathy Powers
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/law_facultyscholarship

Part of the Civil Rights and Discrimination Commons, and the Law and Race Commons

Recommended Citation

This Article is brought to you for free and open access by the School of Law at UNM Digital Repository. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.
Automated traffic enforcement systems disproportionately impact Black communities in the United States. This Essay uncovers a troubling reality: while technologies such as speed cameras and red light cameras are often touted as tools for public safety by the National Highway Safety Transportation Administration, they disproportionately burden Black and Hispanic neighborhoods. The authors coin the term “automated stategraft” to describe this phenomenon—an insidious process that siphons financial resources from already vulnerable groups under the guise of law enforcement. In doing so, it exacerbates economic disparities and erodes trust in legal and governmental institutions.

This Essay delves into the biases inherent in these technologies, particularly in the future of automated traffic enforcement: facial recognition systems. These biases amplify racial and economic injustices, perpetuating inequities. To address this pressing issue, this Essay proposes more just traffic enforcement practices that prioritize community trust and avoid exacerbating racial disparities. It advocates for a critical reevaluation of existing practices, emphasizing equity, justice, and community well-being over financial gain or excessive surveillance. This call to action underscores the urgent need to safeguard public interests in an era marked by increasing...
surveillance, ensuring that technological advancements in law enforcement serve to protect—rather than oppress—marginalized communities.

Introduction .. 667
I. Traffic Enforcement Cameras ... 669
 A. Overview and Implementation ... 669
 1. Historical Context of Automated Traffic Enforcement 669
 2. Reasons for Implementing Traffic Enforcement Cameras 672
 4. Technical Aspects and Operational Concerns 676
 B. Impact on Communities ... 681
 1. Unfair Burden on Predominately Black and Hispanic Neighborhoods 681
 2. Examples from Specific Municipalities 683
II. Automated Stategraft through Automated Traffic Enforcement 685
 A. Profitability of Automated Enforcement for Governments 685
 1. Revenue Generation through Traffic Cameras 686
 2. The Debate over Revenue versus Safety Objectives 693
 3. Impact on Public Perception and Trust 694
III. Technology: Bias and Racial Implications ... 694
 A. The Issue of Bias in Automated Systems 694
 1. Identifying and Mitigating Bias in Automated Enforcement 695
 2. The Misconceptions of Fairness in Automated Enforcement Systems 697
 3. Ethical Considerations: The Dangers of Perfect Surveillance 698
 B. Addressing Racial Disparities .. 700
 1. Technology and Its Role in Exacerbating Racial Injustice 700
 2. Proposals for Reform and Equity in Traffic Enforcement 701
IV. Alternatives to Increased Technological Surveillance 702
 A. Improving Traffic Enforcement without Escalating Surveillance 703
 B. Balancing Safety, Equity, and Privacy 704
Conclusion ... 705
INTRODUCTION

In the landscape of post-pandemic economic recovery, U.S. cities have found a way to bridge budget deficits: automated traffic enforcement.\(^1\) The implementation of speed cameras and advanced traffic enforcement technologies marks a significant shift in urban fiscal strategy. However, this solution is casting a shadow over Black communities, which increasingly feel the brunt of this enforcement.

In the heart of Chicago, young entrepreneur Rodney Perry unwittingly became a symbol of a contentious policy. While launching his new business, Perry experienced an unexpected twist: a barrage of traffic fines.\(^2\) Within a year, Perry was saddled with eleven traffic tickets, a considerable number for marginally exceeding new, stricter speed limits.\(^3\) The financial fallout was severe: over $700 in fines, a Denver boot immobilizing his vehicle, and the added burden of borrowing money to clear his dues.\(^4\)

Perry’s story is a microcosm of a larger, troubling pattern. Black communities—already navigating the complexities of post-pandemic recovery—find themselves disproportionately targeted by these predatory automated enforcement tactics.\(^5\) The use of technology, while ostensibly a neutral tool to generate revenue for cities, is inadvertently exacerbating existing inequalities.

This raises crucial questions about the equity of such policies, highlighting a scenario where measures intended to bolster city finances are placing an undue strain on communities that are the least equipped to bear it. This practice raises critical questions about the fairness and impact of such policies, especially in neighborhoods where every street corner seems to have a watchful camera. While aimed at enhancing road safety, these measures hint at a deeper narrative of disproportionate enforcement and the burden it places on the community’s shoulders, challenging the balance between fiscal objectives and the goal of genuinely safer streets.

1. See Katie O’Brien, Camera-Enforced Streets: Creating an Anti-Racist System of Traffic Enforcement, 36 J. C.R. & ECON. DEV. 515, 536, 554 (2023) (showing that for-profit companies install and maintain traffic enforcement cameras, contracting with local governments).
3. Id.
4. Id.
5. See O’Brien, supra note 1, at 544.
Traffic enforcement cameras frequently ignite debates over fairness and equality. A central concern is their disproportionate impact on low-income and minority communities, particularly Black and Hispanic communities. The phenomenon of “driving while Black” highlights a troubling pattern: Black drivers are more likely to be stopped, ticketed, threatened, or harassed by police. The financial repercussions from traffic tickets disproportionately burden these drivers, often leading to debt and a higher likelihood of entanglement with the criminal legal system even after a routine traffic stop.

Automated traffic enforcement expands the surveillance and punitive experience of driving while Black. This context is vital when considering the future of automated traffic cameras and facial recognition technology. Contrary to the assumption that algorithms are impartial, these systems can perpetuate racial, gender, and other biases. The uneven distribution of cameras may result in biased enforcement, disproportionately targeting certain communities. Moreover, traffic camera fines pose an additional financial strain on those from lower socioeconomic backgrounds, exacerbating existing inequalities. This reality calls for a critical reassessment of the use and implications of automated enforcement systems to ensure they do not perpetuate bias.

This Essay explores how automated traffic enforcement is stategraft, when public officials illegally transfer property to public coffers, and in this case, using electronic means that accelerate the harm, creating

6. Id. at 518. Disparities like these are highlighted by how many times Sandra Bland and Philando Castile were pulled over by police over the years. For example, “[i]n his fourteen years of driving, police stopped Castile fifty-two times, resulting in eighty-six minor traffic offenses and $6,588 in fines and fees.” Id. at 516–17. See also Kelsey Shoub, Leah Christiani, Frank R. Baumgartner, Derek A. Epp & Kevin Roach, Fines, Fees, Forfeitures, and Disparities: A Link Between Municipal Reliance on Fines and Racial Disparities in Policing, 49 POL’Y STUD. J. 835, 855 (2021) (finding that when police regularly rely on fines, “black drivers are searched at the same rate, but the rate for white drivers declines”); Kevin Roach, Frank R. Baumgartner, Leah Christiani, Derek A. Epp & Kelsey Shoub, At the Intersection: Race, Gender, and Discretion in Police Traffic Stop Outcomes, 7 J. RACE ETHNICITY & POL. 239, 256 (2022) (finding that Black male drivers are more likely to be searched and this disparity is exacerbated by investigatory stops); Frank R. Baumgartner, NC Traffic Stops, U.N.C. CHAPEL HILL, https://fbaum.unc.edu/traffic.htm [https://perma.cc/BKC5-M9NM] (highlighting traffic stop trends in North Carolina from 2002 to 2020).

Automated stategraft. Part I describes automated traffic enforcement, its use, technological foundation, and concerns about the disparate impact of this technology. Part II outlines how automated enforcement generates profit and litigation. Part III presents concerns about disparate automated enforcement technologies and recommendations to address safety and equity. The Essay concludes with a call to continue to safeguard the American public from automated stategraft in an age of technology-enabled surveillance.

I. WHY TRAFFIC CAMERAS RAISE EQUITY CONCERNS

U.S. cities are increasingly turning to automated traffic enforcement, a system rife with concerns about fairness and equity. While proponents tout safety benefits, the real driver behind these programs is often the generation of substantial profits from fines. Speed cameras and red light cameras are disproportionately placed in Black neighborhoods, creating a system of predatory fines that traps low-income residents in debt. Red light cameras and speed cameras are examples of automated enforcement systems that remotely capture images of drivers who violate traffic laws. The systems then issue citations. To understand the enormity of the harm, it helps to start with a foundational understanding of the technology, bias, and the Black community. This Part discusses the implementation of traffic enforcement cameras, how the technology works, and how this automated enforcement disproportionately impacts predominately Black and Hispanic communities.

A. Overview and Implementation

1. HISTORICAL CONTEXT OF AUTOMATED TRAFFIC ENFORCEMENT

It is dangerous to walk in the United States. There is no single factor that explains why U.S. roads are more dangerous for pedestrians,
but there are several contributing reasons, such as deadly road design, large SUVs and trucks, and pandemic-influenced driving styles.11 It is also dangerous to drive in the United States. The AAA Foundation found that approximately 46\% of people killed in red light–running crashes were passengers or people in other vehicles and more than 5\% were pedestrians or cyclists.12 Approximately 35\% of those killed were the drivers who ran the red light.13 Speed-related crashes made up 29\% of all crash fatalities in 2021.14 The National Highway Traffic Safety Administration estimates the economic cost of speed-related crashes was approximately $46 billion in 2019.15

As bad as these conditions are, they are compounded when the pedestrian, driver, and/or traveler is Black.16 A study by the Boston University School of Public Health and the Harvard T.H. Chan School of Public Health found that traffic deaths disproportionately affect Black and Hispanic/Latino people with greater disparities than previously thought.17

\begin{minipage}{\textwidth}
\begin{flushleft}
13 Id.
\end{flushleft}
\end{minipage}
Inadequate investment in pedestrian infrastructure leads to higher fatalities in marginalized communities, and particularly in Black, lower-income, and tribal communities. In Houston, researchers found that Black neighborhoods had a thirty-five percent higher rate of pedestrian crashes than non-Black neighborhoods, primarily due to poorly designed infrastructure.

Traffic stops are a common form of government-citizen interaction that raise complex law enforcement issues. These stops occur over 50,000 times every day in the U.S. Notably, Black drivers face a higher risk; they are twenty percent more likely to be stopped by police than White drivers. Moreover, once stopped, Black drivers have a greater risk; they are more likely to experience the threat of force or nonfatal use of force by the police.

Hispanics were 1.4 times and Native Americans were 4.5 times more at risk of being killed while walking than White non-Hispanic people. Id. at 17. Hispanics made up 16.9% of the population but accounted for 21.5% of pedestrian crash deaths. Id. at 16.

21. Regan F. Patterson, CONG. BLACK CAUCUS FOUND., NEW ROUTES TO EQUITY: THE FUTURE OF TRANSPORTATION IN THE BLACK COMMUNITY 11 (2020), https://www.cbccinc.org/wp-content/uploads/2020/10/NewRoutesToEquity-Final5.pdf [https://perma.cc/6RMD-VKU9]. See also Susannah N. Tapp & Elizabeth J. Davis, Contacts Between Police and the Public, 2020, at 11 tbl.8 (2022) (showing Black and Hispanic persons are more likely to experience the threat of force or nonfatal use of force by the police).
likelihood of arrest, charges, and incarceration. This disproportionate impact has led to increased support among Black communities for automated traffic enforcement. A Rutgers study indicates that framing these systems within a racial justice context enhances their acceptance, reflecting a community’s shift towards technology-based solutions to mitigate biases in traffic law enforcement.

2. REASONS FOR IMPLEMENTING TRAFFIC ENFORCEMENT CAMERAS

Responding to community demands, speed cameras now feature in pedestrian safety strategies across 196 U.S. cities, counties, and other communities, while 337 have implemented red light programs. These systems offer many benefits: enhanced public safety, minimized interactions with law enforcement, and bolstered state and city profits.

22. Shoub, Christiani, Baumgartner, Epp & Roach, supra note 6, at 839. Race is often a mediating factor in police-citizen traffic stops. In general, Black drivers are more likely to experience a traffic stop than are White drivers. Further, “cities with larger Black populations tend to have higher rates of ticketing and revenue collection per capita than cities with smaller Black populations.” Support for Traffic Cameras Increases if Used as a Tool to Limit Interactions with Police, RUTGERS UNIV. (July 11, 2022), https://www.rutgers.edu/news/support-traffic-cameras-increases-if-used-tool-limit-interactions-police [https://perma.cc/DDD7-LAAP].

26. See Biron, supra note 25. Albuquerque’s mayor, Tim Keller, stated, “our goal here is behavior change. We’re not going to gain any points or profit for this program for citing people.” D’Val Westphal, Albuquerque Speed Enforcement Camera Citations Are on the Rise but the Money Isn’t Adding up: Here’s What We Know, ALBUQUERQUE
However, the efficacy of traffic cameras in improving road safety remains contentious. Proponents highlight their role in enhancing overall safety. However, critics argue that they merely alter the nature of accidents. For example, the presence of these cameras can lead to behavioral adaptations by drivers, like abrupt braking to avoid fines. This may increase the risk of rear-end collisions at intersections with red light cameras.

Speed cameras, by recording license plates, enable municipalities to automatically issue violations for traffic law breaches. As of January 2024, twenty-five states and the District of Columbia permit red light cameras, and the same number allow speed cameras under state laws or city ordinances. 27 These laws typically set guidelines for camera usage, often in sensitive areas like school or work zones. 28 Conversely, nine states have banned speed cameras and eight prohibit red light cameras. 29

The impact on law enforcement is notable. For example, due to the influence of automated traffic enforcement on driver behavior, the San Francisco Police Department saw a dramatic decrease in speeding tickets issued, from 948 in September 2015 to just ninety-one in September 2016.

This shift reflects the growing reliance on automated enforcement and its significant role in capturing traffic violations.

3. THE RETURN OF AUTOMATED TRAFFIC ENFORCEMENT: WHY NOW?

Automated enforcement, unpopular in the U.S., faces criticism for causing new kinds of accidents, lacking transparency, and being partly managed by private firms which share ticket profits. Public trust in automated enforcement further eroded after Redflex, a private firm involved in several jurisdictions—including Chicago—was embroiled in a bribery scandal that led to convictions. Although Redflex settled a fraud lawsuit with Chicago for $20 million, the company’s peak revenue was $44 million in 2023. Recently, factors like the COVID-19 pandemic and technological advancements have reignited discussions about this technology.

Driver Behavior after COVID-19. At the height of their use, red light cameras became widely unpopular in the 2010s, and many municipalities found themselves reversing course. However, COVID-19 restarted efforts to increase automated traffic enforcement.

31. See Maya Fegan, Speeding into the Future: The Pitfalls of Automated Traffic Enforcement, BERKELEY J. CRIM. L.: BLOG (Apr. 15, 2021), https://www.bjcl.org/blog/speeding-into-the-future-the-pitfalls-of-automated-traffic-enforcement [https://perma.cc/ABD5-WKEZ] (“In recent years, there has been increasing backlash against ATE, primarily due to public perception of the fines as excessive and revenue-driven.”).

32. See id.

36. DEWEES, supra note 29, at 4–5.
behavior changed. Though fewer drivers were on the roads, drivers became less vigilant and common driving mistakes increased, such as speeding, distracted driving, mobile phone usage while driving, and inebriated driving. The National Highway Traffic Safety Administration found a significant and ongoing rise in traffic-related deaths in the U.S., with 2020 seeing the highest number in over a decade, and this upward trend continuing into 2021.

Legal Challenges, Evolving Tech, and Federal Funds.

The implementation of traffic cameras has faced legal hurdles, such as in St. Louis, Missouri. The city halted its use of traffic cameras in 2013 after facing legal challenges. In 2015, the Missouri Supreme Court ruled against the use of these cameras. The court’s decision highlighted a fundamental flaw in the system: it unjustly required drivers to prove they were not operating the vehicle at the time of the offense.

In response to these legal challenges, there is a movement towards integrating innovative technologies into traffic enforcement. Proposed systems include the use of facial recognition technology, coupled with cross-referencing data from various databases, to accurately identify drivers before issuing any citations or summonses. This technological advancement aims to address the accuracy and fairness concerns previously raised by the Missouri Supreme Court.

39. Andrew Gross, *Solving a Puzzle: With Fewer Drivers on the Road During COVID, Why the Spike in Fatalities?*, AAA NEWSROOM (Feb. 28, 2022), https://newsroom.aaa.com/2022/02/solving-a-puzzle-with-fewer-drivers-on-the-road-during-covid-why-the-spike-in-fatalities/ [https://perma.cc/3HKE-BN68]. In 2020, approximately 38,680 people died in vehicle crashes, a 7.2 percent increase compared to the reported 36,096 deaths in 2019. And there was a 12 percent increase from the first nine months of 2020 compared to the first nine months of 2021, with an estimated 31,720 deaths caused by crashes. Id.

40. Palermo, supra note 29.

41. Id.

42. Id.

43. Id.
Accompanying these technological updates, there is an anticipation of new legislation aimed at addressing civil liberty concerns related to surveillance and data collection. The goal is to strike a balance between effective law enforcement and the protection of individual privacy rights.

The recent increase in federal funding through the Federal Infrastructure Investment and Jobs Act has opened doors for states to allocate these funds towards traffic cameras, specifically in work and school zones. This development marks a significant shift in traffic enforcement strategy, backed by federal support.

Moreover, the revenue generated from traffic fines is proposed to be fully reinvested into sustaining and improving the traffic camera program, supporting driver education, and funding traffic infrastructure improvements. This reinvestment strategy aims to create a comprehensive and self-sustaining traffic safety system, underpinned by new federal funding, legal compliance, and advanced technology.

4. TECHNICAL ASPECTS AND OPERATIONAL CONCERNS

Though the technology is relatively established, concerns continue to revolve around accuracy, privacy, and security. Speed enforcement uses radar and aerial speed enforcement along with automated enforcement, which can use radar or lidar detectors embedded in the roadway to gauge vehicle speed. The camera captures the date, time, location, speed, and license plate of the vehicle. In some jurisdictions, it will also capture a picture of the driver. There are also efforts to design automated enforcement to scan for distracted driving and seatbelt enforcement. These programs are already in use in the United Kingdom as of November 2023, no state laws address the use of automated enforcement specifically to combat distracted driving. . . . [Automated enforcement] technology to prevent distracted driving has proven successful in Australia and is currently being tested in North Carolina with commercial motor vehicle operators only. The system uses both fixed and mobile cameras to capture driver footage, which is then reviewed by artificial intelligence to identify the operator and violation. . . . In addition to being used to enforce distracted driving laws, this technology can also be used to enforce seat belt laws and address traffic violations such as expired registrations. In 2019,
and there are tests underway in North Carolina. And the Los Angeles City Controller was quoted saying they had the technology to watch for other driving violations. This technology can monitor and assess a variety of factors.

Red-light safety cameras take photographs of vehicles entering signalized intersections after the light has turned red. The cameras are connected to the traffic signal and sensors that monitor traffic flow just before the crosswalk or stop line. The sensors provide additional violation data such as vehicle speed and how long the light was red before the vehicle entered the intersection. . . . Many red-light safety camera programs provide motorists with a grace period of up to half a second after the light turns red.

License Plate Readers. Speed cameras usually capture license plate images, but not images of driver or passenger faces. However, California and some other states require a picture of the driver’s face;

Id. at 9.

51. Id.; Suspected Seatbelt and Mobile Phone Offences Captured as Part of Week of Action, Hampshire & Isle of Wight Constabulary (July 25, 2023, 11:59 AM), https://www.hampshire.police.uk/news/hampshire/news/news/2023/july/Suspected-seatbelt-and-mobile-phone-offences-captured-as-part-of-week-of-action/ (“The van is equipped with two cameras which capture suspected offences. One of them is set at a shallow angle to identify mobile phone use to the ear, and to see whether the seatbelt is going across the body or hanging down behind the driver. The second camera has a steep view, providing visibility of mobile phone use low down, to detect behaviour such as texting near the steering wheel or door. . . . This process ensures that only clear offences, which are reviewed by at least two humans, are considered for prosecution.”).

52. Laura Strachan, Red Light Camera Tickets To Include Other Violations?, FindLaw, findlaw.com/legalblogs/law-and-life/red-light-camera-tickets-to-include-other-violations/ (Mar. 21, 2019).

some use facial recognition and some do not. In general, an insurance company found a five percent error rate in speed and red light cameras for various reasons. On October 13, 2023, California passed a bill which bans or restricts the use of facial recognition for police body cameras, traffic monitoring, and other uses. However, cameras that capture facial images can save those images in databases, which could be used for other law enforcement activities unless laws prevent this storage. The lack of clarity in whether facial images are collected or stored is itself a question of concern.

Facial Recognition and Traffic Enforcement Cameras. Jurisdictions are debating adding facial recognition to traffic enforcement cameras. It is important for the legal community to understand its implications on automated traffic enforcement. Facial recognition technology primarily utilizes convolutional neural networks (CNNs), a deep learning algorithm integral to many AI applications, including image analysis. CNNs transform facial features, or pixel values, into numerical representations for comparison against a facial image database, excelling in pattern and feature recognition by mimicking the human visual cortex’s layer-based

55. See Red Light Camera Citation, Superior Ct. of Cal.: Cnty. of S.F., https://sf.courts.ca.gov/divisions/traffic/red-light-camera-citation [https://perma.cc/C2QG-ADTL]. While California will not use facial recognition, St. Louis, Missouri, will use facial recognition when reviewing automated traffic enforcement. Cal. Veh. Code § 22425(h)(4) (West 2024); Palermo, supra note 29.

(4) Photographic evidence that is obtained from a speed safety system that does not result in the issuance of a notice of violation shall be destroyed within five business days after the photograph was first made. The use of facial recognition technology in conjunction with a speed safety system shall be prohibited.

Id. § 22425(h)(4). Since the language says images not resulting in a fine cannot be stored, there needs to be clarification on whether images resulting from a fine can be stored. A recent bill puts restrictions on facial recognition technology. See Press Release, Phil Ting, New Legislation by Assemblymember Ting Targets Law Enforcement Use of Facial Recognition Technology To Protect Californians (Jan. 11, 2024), https://a19.asmdc.org/press-releases/20240111-new-legislation-assemblymember-ting-targets-law-enforcement-use-facial [https://perma.cc/6WPY-4HWR].

Despite their longstanding use in surveillance and access control, and increasing accuracy\(^\text{60}\) for some demographics, facial recognition algorithms are evolving, with technologies like GPT4 and Gemini potentially diverging from the CNN-based methods. This evolution underscores the dynamic nature of facial recognition, where varying technologies may exhibit distinct accuracy levels and distinct biases.

Concerns About Technology. The technology’s reliability is compromised by factors such as poor lighting, incorrect poses, obstructions like hair, and crucially, the biases in training data. The latter issue, highlighted by AI researchers Joy Buolamwini and Timnit Gebru, significantly impacts darker-skinned individuals, with some systems historically failing on approximately twenty-two percent of such faces.\(^\text{62}\) In contrast, the error rate was less than one percent on light-skinned male faces, and most of the data that trained the model were collected from the White male tech workforce.\(^\text{63}\) Although improvements have been made—reducing error rates in some systems to as low as 0.5 percent for specific tasks—racial and gender biases persist, necessitating independent bias audits for each application of facial recognition in traffic monitoring to ensure fairness and effectiveness.\(^\text{64}\)

Cybersecurity risks in connected technologies like traffic enforcement systems are often sidelined, but these vulnerabilities are a core concern. Such systems are prone to hacking, potentially leading to evidence tampering or generating false traffic violation reports.\(^\text{65}\)

60. See *id.* at 1–2. For clarity, the technology involves feature matching by pixel, where the algorithm identifies unique facial features by analyzing the pixels of an image. It compares these features against a database to find matches, making it a powerful tool for identity verification and other applications. See *id.*; Soad Almabdy & Lamiaa Elrefaei, *Deep Convolutional Neural Network-Based Approaches for Face Recognition*, *Applied Sci.*, Oct. 17, 2019, at 1, 2–3.

63. *Id.* at 6, 9.

64. Inioluwa Deborah Raji, Timnit Gebru, Margaret Mitchell, Joy Buolamwini, Joonseok Lee & Emily Denton, *Saving Face: Investigating the Ethical Concerns of Facial Recognition Auditing*, 2020 AEIS 145, 147.

is also the risk of personal data exposure in the event of security breaches, emphasizing the need for robust security measures.66

Scams mimicking government documents are widespread, affecting public trust. An instance in Bernalillo County, New Mexico, saw residents receive fraudulent letters from a “Tax Processing Unit,” falsely claiming unpaid taxes and threatening property seizure.67 This undermines confidence in official notices, leading people to overlook genuine documents.

The reliability of traffic enforcement cameras is vital. False positives, where cameras incorrectly identify lawful vehicles as violators, and false negatives, where violations are missed, are common.68 Factors like poor camera calibration, inadequate resolution, or environmental challenges like adverse weather and poor lighting can contribute to these inaccuracies.69 In Texas, drivers have reported cameras capturing images of minor infractions, such as edging into a crossing or slightly crossing a line at a red light, raising fairness concerns.70 For red light cameras, the timing mechanism’s precision is vital; slight timing errors can lead to unwarranted tickets, undermining the system’s fairness.71

Errors in vehicle identification, often due to misreading license plates or deliberate obfuscation, are also frequent.72 Each specific facial recognition software used in traffic monitoring must undergo independent bias audits to ensure accuracy and equity, as these audits are not universally applicable.73 Issues related to facial recognition tied to vehicle

66. See id.
68. Cf., e.g., Scott Desind, 3 Flaws in Traffic Cameras You Should Be Aware of, TRAFFIC TICKET ATT’YS, (Nov. 1, 2014), thetrafficticketattorneys.com/blog/traffic-cameras-flaws/ [https://perma.cc/8YXH-4WC5].
71. See Desind, supra note 68.
ownership are the most pernicious for the Black community and others with darker complexions.74

While traffic enforcement systems offer potential benefits for road safety and regulation, their effectiveness is significantly undermined by cybersecurity risks, potential for scams, and inherent biases in technology, particularly facial recognition. These challenges necessitate robust security measures, public awareness, and continuous auditing for biases.

\textbf{B. Predatory Ticketing: How Traffic Cameras Exploit Communities of Color}

\textbf{1. UNFAIR BURDEN ON PREDOMINATELY BLACK AND HISPANIC NEIGHBORHOODS}

Traffic enforcement cameras raise ethical, legal, and social concerns, reflecting apprehensions about their implementation and impact. These systems unfairly target residents with a barrage of financial penalties, creating a system of predatory ticketing that traps low-income residents in debt. Criticisms include their ineffectiveness and exacerbation of racial inequities.75 In Chicago, proximity to expressways results in higher ticketing in Black neighborhoods.76 A majority of the city’s top ticketed intersections are in Black census tracts.77

Nationally, organizations have highlighted the disproportionate surveillance of low-income, Black, and Hispanic communities.78 In

\begin{itemize}
\item 74 See, e.g., Buolamwini & Gebru, supra note 62, at 3.
\item 76 Hopkins & Sanchez, supra note 2.
\item 77 Id. (stating six of the ten locations that issued the most tickets are in majority Black census tracts). Meanwhile, only two of the ten intersections where red light cameras issued the fewest tickets are in majority Black tracts. \textit{Id.}
\end{itemize}
Chicago, Black ZIP codes, representing twenty-seven percent of households, received thirty-eight percent of camera tickets from 2015 to 2019.79 The COVID-19 pandemic intensified these disparities, with Black and Latino workers, who are less likely to have remote jobs, facing higher financial penalties.80 ProPublica found that majority-Black ZIP codes had a ticketing rate three times higher than majority-White areas in 2020.81

Despite race-neutral intentions, ProPublica’s analysis reveals Black and Latino drivers still face disproportionate ticketing in Chicago.82 While automated enforcement reduces police-community interactions, Priya Sarathy Jones of the Fines and Fees Justice Center cautions that it can create parallel financial burdens on marginalized groups.83

But what happens when electronic surveillance is used against pedestrians in the name of pedestrian safety? It is already documented that Black pedestrians constitute a disproportionate number of individuals ticketed for pedestrian violations such as biking citations or jaywalking.84

\footnotesize{79. Hopkins & Sanchez, supra note 2. In majority-Hispanic ZIP codes, which make up nineteen percent of tickets and sixteen percent of households, the disparity was less severe. Id. Households in majority-Black ZIP codes received an average of four citations, more than twice as many as majority-White ZIP codes, which received less than two tickets. During the same period, households in majority-Hispanic ZIP codes received more than three citations per household. Id.}

\footnotesize{80. Id.}

\footnotesize{81. Id. While there was an increase, it was much smaller for households in majority-Hispanic ZIP codes. Id.}

Disproportionate instances of “biking while Black” citations happened in New York City, Fort Lauderdale, Chicago, and Minneapolis. In New York City, Black and Latino pedestrians received almost ninety percent of illegal walking citations in 2019. In Sacramento, Black pedestrians were five times more likely than White pedestrians to receive a jaywalking citation. These disparities in citations were especially prevalent during the COVID-19 pandemic, and continue to make walking and cycling unsafe for people of color because of increased interactions with law enforcement. If being a Black, Hispanic, or Native American pedestrian or cyclist is penalized, what will happen when surveillance is continually and incorrectly causing increased infractions against these populations?

2. EXAMPLES FROM SPECIFIC MUNICIPALITIES

Rochester, New York, and Miami discontinued their automated traffic enforcement programs in 2016 and 2017, respectively, due to

concerns over their impact on low-income communities.\(^90\) Meanwhile, in Chicago, Mayor Lori Lightfoot proposed a “smart streets pilot” project for automatic ticketing of parking or standing violations.\(^91\) Cameras mounted on poles and city or Chicago Transit Authority vehicles would automatically ticket drivers who are parked or standing illegally in crosswalks, bike lanes, bus lanes, bus stops, and no parking zones.\(^92\)

Albuquerque has a convoluted history with automated speed enforcement. Looking to address safety and equity, the city initially adopted the technology in 2005,\(^93\) but faced a hiatus following a 2010 ban.\(^94\) However, driven by traffic data and safety concerns, speed cameras were reintroduced in May 2022.\(^95\) Despite challenges like incorrect enforcement\(^96\) and vandalism,\(^97\) Albuquerque’s approach evolved, especially with the Vision Zero Action Plan focusing on major

\(^92\) Id.

speed violations.98 The city’s enforcement system offers citation appeals, mainly used in cases of vehicle sale or theft.99 However, non-payment of fines remains an issue, leading to proposals for stricter measures to enhance compliance and pedestrian safety.100 To tackle persistent non-payment, city leadership proposed an ordinance to treat unpaid fines as municipal parking offenses.101 This would enable parking enforcement to boot vehicles with three or more unpaid fines, thereby enhancing compliance and the overall effectiveness of the speed enforcement program in ensuring pedestrian safety.102 These systems create a cycle of debt and despair. Unpaid fines lead to further penalties, car booting, and even license suspension, making it even harder for people to get to work or afford basic necessities.

II. AUTOMATED STATEGRAFT THROUGH AUTOMATED TRAFFIC ENFORCEMENT

Legally, the use of camera footage as evidence in traffic violation cases has been challenged, questioning its admissibility and its reliability as evidence. This Part outlines relevant case law, pertinent legislation, and how automated traffic enforcement is automated stategraft.

A. Profitability of Automated Enforcement for Governments

Traffic enforcement cameras line government coffers through a system of automated stategraft. These systems exploit residents with a barrage of punitive charges, creating a financial burden that disproportionately impacts low-income communities. When their municipal coffers are low, local governments employ mechanisms including fines, fees, and forfeitures to fill them.103 Financial incentives

98. Nathanson, supra note 94 (“The new approach to dealing with speeders came out of the Vision Zero Action Plan, a collaboration among city departments and agencies and community partners, which formed a task force to study the problem of speeding and make recommendations for creating safer streets.”).

101. Id.

102. Id.

make it so local elected officials and camera companies have an interest in using the system to help municipalities, even if doing so is not in the public’s best interest.

1. PROFIT GENERATION THROUGH TRAFFIC CAMERAS

Juniper Research anticipates a significant increase in spending on automated traffic enforcement systems over the next five years.\(^\text{104}\) It projects that expenditures on smart traffic management solutions will surge to $18.6 billion by 2028, up seventy-five percent from $10.6 billion in 2023.\(^\text{105}\) This growth reflects a global trend towards smarter traffic solutions, with cities like Albuquerque making significant investments—$400,000 in 2019 and $1 million in 2021—in its automated enforcement systems.\(^\text{106}\)

Cities across the U.S. have seen substantial revenue from automated enforcement.\(^\text{107}\) For instance, Suffolk County, New York, generated $28.9 million in 2017, paying $9 million to its vendor.\(^\text{108}\) Yet, despite this revenue, rear-end crashes at red light camera intersections in the

\(^{105}\) Id.

\(^{108}\) Hauser, supra note 70.
county increased by twenty-one percent from 2009 to 2016.109 Similarly, Washington, D.C., amassed $1 billion from traffic and parking tickets in three years, boasting the highest fine revenue per resident in the United States.110 Chicago’s 2014 initiative to ticket drivers at yellow lights marginally shorter than the three-second city minimum brought in approximately $8 million from an additional 77,000 tickets.111 Albuquerque earned over $1.9 million,112 while Illinois collected more than $1 billion from 2008 to 2018 through red light cameras.113 In 2021,

New York City collected approximately $30 million from red light violations,¹¹⁴ and in 2022, Tampa, Florida, received $10 million.¹¹⁵

The Insurance Institute for Highway Safety encourages local governments to spend their automated traffic enforcement revenue on transportation safety programs.¹¹⁶ In New Mexico, half of the funds from automated speed enforcement go to the state, with the rest going to municipalities to cover program costs.¹¹⁷ California’s pilot program in six counties mandates using revenue first for program costs, then for local traffic safety measures.¹¹⁸ Spokane Mayor Nadine Woodward proposed allocating traffic camera ticket funds for law enforcement in November 2023.¹¹⁹

However, controversies persist. Los Angeles’s 2004 red light program faced criticism for prioritizing revenue over safety, leading to its termination by the city council in 2011.²²⁰ One 2020 study found that

¹¹⁵ Olivia George, One Year, 56 Red-Light Cameras, $10 Million in Tickets, TAMPA BAY TIMES, https://www.tampabay.com/news/transportation/2023/02/20/red-light-camera-tampa-florida-revenue-road-safety/ (Feb. 21, 2023) (“Since red light cameras arrived in Tampa in 2011, the program has generated more than $84.3 million from tickets through the end of 2022 — about a quarter of which went to Verra Mobility, according to public records. Last year, the city earned about $3.1 million in profit from the cameras. Verra Mobility received $1.8 million and the Florida Department of Revenue received $5.4 million.”).

¹¹⁶ Red Light Running, supra note 27.

¹¹⁹ Nate Sanford, Spokane’s Mayor Proposes Using Traffic Camera Ticket Funds To Pay for Police, INLANDER (Nov. 9, 2023), https://www.inlander.com/news/spokane-mayor-proposes-using-money-raised-by-traffic-camera-tickets-to-pay-for-police-but-citycouncil-members-say-shes-just-trying-to-sh-26938971 [https://perma.cc/62PJ-NJKU] (“In the early part of the decade, annual revenue from enforcement cameras was roughly $1.5 million. But as the city added more cameras, revenue grew, and now camera revenue averages closer to $5.5 million each year.”).

Houston’s cameras altered accident types but did not reduce them. In response to a nearly $400 million profit decline, Washington, D.C., added numerous traffic cameras in its 2023 budget.

Legal Challenges and the Difficulty of Establishing Illegality. The red light camera programs have faced legal challenges alleging they violate constitutional rights and discriminate against motorists. Besides public outcry, there are state and federal government preemptions as well as state and federal constitutional interests. “The constitutional bars include interests in equal protection, non-excessive fines, and due process.”

Federal courts have generally rejected claims that red light camera ordinances and statutes violate substantive due process, procedural due process, or the Fifth Amendment’s Takings Clause. Attempts to preempt local ordinances with state law have been unsuccessful in Iowa, New Mexico, and Ohio, but were successful in Minnesota, Colorado, and Louisiana.

124. See, e.g., *Shavitz v. City of High Point*, 270 F. Supp. 2d 702, 720 n.17 (M.D.N.C. 2003) (noting that the mere fact that an administrative or judicial body benefited financially from the fines or penalties it imposed was not generally a violation of due process, unless “the decisionmakers s[and] to gain substantial, personal pecuniary benefits from their adjudicative decisions” (quoting *Doolin Sec. Sav. Bank, F.S.B. v. Fed. Deposit Ins. Corp.*, 53 F.3d 1395, 1406 (4th Cir. 1995))). See also *Hughes v. City of Cedar Rapids*, 112 F. Supp. 3d 817, 840–41 (N.D. Iowa 2015) (holding a city was not required by federal due process to follow state procedure).

126. Maisel, *supra* note 35, at 421; *McCarthy v. City of Cleveland*, 626 F.3d 280, 283–85 (6th Cir. 2010) (holding that the images captured by automated enforcement cameras did not create a per se “taking” within the meaning of the Fifth Amendment).

Litigants have argued the programs lack due process, violate privacy, and unlawfully delegate police powers to private companies. The lawsuits have not focused on problems with the technology itself, but rather the way the programs are implemented and enforced. The legal debate centers around whether cities have proper authority to use automated enforcement and whether the hearing process is fair. While some lawsuits have succeeded in ending local programs, most challenges have been unsuccessful. Some individuals have attempted to focus on racial due process violations. The core technology behind red light cameras has generally withstood legal scrutiny. But the legal system is starting to recognize instances of unlawful takings. In 2016, there was a $3.5 million settlement for drivers in New Mexico against Redflex. "The drivers claimed Redflex and the company’s collection agency, CreditWatch Services, hassled them non-stop after voters in the city canceled the program in 2011 and the cameras were removed." In 2021, drivers filed a class action in Stone Park, Illinois, asserting they were wrongly ticketed for stopping past the line while legally turning right on red. In October 2023, Washington, D.C.

128. See, e.g., Hughes, 840 F.3d at 991, 997.
131. See, e.g., Krieger, 978 N.Y.S.2d at 604-05; Hunt, 574 S.W.3d at 436.
132. See, e.g., Mathis v. City of Lakeland, No. 22-12426, 2023 WL 2568814, at *2 (11th Cir. Mar. 20, 2023). In Mathis, the plaintiff argued that the city conspired to violate his due process rights because he was Black. Id.
133. But see People v. Rekte, 181 Cal. Rptr. 3d 912, 916, 919 (Ct. App. 2015) (holding that the red light camera system did not withstand legal scrutiny after the motorist successfully presented expert testimony and evidence showing inaccuracies in its computer-generated data and the city could not produce independent evidence to show the system was reliable).
D.C., stopped denying residents the ability to renew their driver’s license if they have outstanding debt to the city, including unpaid parking or traffic fines and fees.137 The court found that D.C. violated the plaintiffs’ procedural due process by denying them a hearing before taking away their property interest in renewing their license.138 The court rejected the city’s arguments that it did not take away property rights by refusing renewals, rather than revoking existing licenses, as these rights had already expired.139 The court found that licensees may have a legitimate claim to renew a driver’s license, making renewal a property interest.140

Some class action lawsuits have been successful in addressing automated traffic enforcement. In 2012, nearly half a million people who received red light camera tickets in New Jersey filed a successful Section 1983 claim against townships with cameras operated by the vendor American Traffic Solutions.141 In one class action complaint, the plaintiffs stated the defendants violated the Fourteenth Amendment’s Due Process Clause and the New Jersey Civil Rights Act and were unjustly enriched.142 The defendants denied all wrongdoing and liability, but settled with the plaintiffs, where each received a partial refund of approximately $6 on their $85 to $140 tickets.143

In a New York class action suit, Halberstam v. City of New York,144 plaintiffs alleged violations of the Fifth and Fourteenth Amendments, fraud, and unjust enrichment, claiming that the city implemented the red light camera program so that the yellow traffic signal durations were less than the three seconds standard set by federal direction.145 The city moved to dismiss, and the court found that the plaintiffs failed to state a proper claim under New York Civil Rights Law Section 11 because the plaintiffs’ complaint did not argue that the $50 fine was disproportionate to the offense of passing through a red light.146 Additionally, the second and third causes of action related to substantive due process were also

138. Id. at 106–07.
139. Id. at 107–08.
140. Id. at 108, 111.
143. Class Action Settlement Agreement at 10–24, Telliho, No. 12-cv-04800; Frassinelli, supra note 141.
145. Id. at 2–3.
146. Id. at 6.
found to be without merit as the city only had to meet a lower level of due process protections.147

In a Chicago class action, \textit{Willis v. City of Chicago},148 the city settled for $38.75 million with the claimants in response to a lawsuit that alleged Chicago did not give motorists adequate notice to red light camera and speed camera violations.149 The lawsuit alleged that the city broke its own regulations by not issuing a second notice of violation before determining guilt and by increasing the fine for late payment of tickets earlier than permitted.150 The city later attempted to pass an ordinance to remove the requirement for a second notice.151

But the case that caught national attention was the 2015 Missouri Supreme Court decision that deemed St. Louis’s ordinance governing red light cameras unconstitutional because it created a rebuttable presumption that shifted “the burden of persuasion onto the defendant to prove that the defendant was not operating the motor vehicle at the time of the violation.”152 The Missouri Supreme Court took issue with two aspects of how the speed cameras were operating. First, “points” were not charged to the driver’s record for this violation, which all moving violations must do under state law.153 Second, the system created a “guilty until proven innocent” dynamic that the court deemed unconstitutional.154 In 2023, the City of St. Louis was prepared to re-implement the cameras even after the Missouri Supreme Court “determined it was unconstitutional to ticket car owners without being able to prove they were the ones who committed the violations.”155

Though the focus is on civil penalties instead of criminal, and the burden

147 Id. Plaintiffs also failed to sufficiently plead their fraud claim. \textit{Id.} at 7–8.

148 Plaintiff’s Motion for Preliminary Approval of Class Action Settlement, No. 16 CH 14304 (Ill. Cir. Ct. July 26, 2017).

150 Schutz, \textit{supra} note 149.

151 Byrne, \textit{supra} note 149.

152 \textit{Tupper v. City of St. Louis}, 468 S.W.3d 360, 365 (Mo. 2015).

153 \textit{See id.} at 372.

154 \textit{See id.} at 372–73.

of proof is less onerous in civil cases, this shift still places an undue burden on the person charged.

2. THE DEBATE OVER REVENUE VERSUS SAFETY OBJECTIVES

Traffic cameras are just one example of a disturbing trend: automated systems that presume guilt and require residents to prove their innocence to avoid unfair confiscation of their money. The state benefits from no longer bearing the burden of proof. This shifts the burden of proof to the vehicle owner to not only prove it was not them driving the vehicle, but to identify who was behind the wheel. The New Mexico law in particular requires residents to swear out an affidavit identifying the driver to avoid the fine.156 A similar dynamic played out with Michigan’s unemployment system.157 Determined to fill budget shortfalls, Michigan instituted an automated system to adjudicate the unemployment process.158 The software, the Michigan Integrated Data Automated System (MiDAS), was designed to detect unemployment fraud and automatically charge people with fraud.159 The technology devolved into an automated shakedown, wrongly accusing tens of thousands of residents of fraud because of a faulty algorithm.160 “It would take years for the state to repay Michiganders, and repayment often followed disastrous fallouts due to years of individual attempts to clear records and reclaim money.”161 The system ran from start to finish with virtually no human oversight and calls to the Michigan Unemployment Insurance

157. See generally Sonia M. Gipson Rankin, The Midas Touch: Atuahene’s “Stategraft” and Unregulated Artificial Intelligence, 98 N.Y.U. L. REV. ONLINE 225 (2023). This article discusses the “algorithm implemented in Michigan that falsely accused recipients of unemployment benefits of fraud and illegally garnished their paychecks and intercepted their IRS tax refunds.” Id. at 226.
158. Id. at 228–29 (explaining that decreased state revenues from the Great Recession caused subsequent budget cuts and implementation of MiDAS).
159. Id. (explaining MiDAS was “was programmed to find inconsistencies in unemployment compensation records, automatically determine if a claimant committed fraud, and execute collection proceedings, which could include garnishing wages and intercepting tax refunds”).
160. Stephanie Wykstra, Government’s Use of Algorithm Serves up False Fraud Charges, UNDARK (June 1, 2020), https://undark.org/2020/06/01/michigan-unemployment-fraud-algorithm/ [https://perma.cc/LAY7-E6NC] (reporting on Michigan’s use of a flawed automated system that identified at least 40,000 workers as having committed fraud—but it had a ninety-three percent inaccuracy rate due to faulty algorithms).
161. Gipson Rankin, supra note 157, at 226.
Agency were largely unanswered or provided vague information. It would take over five years until Michigan offered full restitution for unlawfully taking from its constituents.

These examples highlight the dangers of relying on automated systems, especially when they lack accuracy and oversight. There is a danger in relying heavily on technology for critical decisions affecting individuals’ lives and legal obligations. These examples underscore the need for checks and balances in automated systems, especially where legal or financial consequences are involved, to ensure fairness and accuracy and to prevent the undue burden on individuals to prove their innocence.

3. IMPACT ON PUBLIC PERCEPTION AND TRUST

Public trust and perception are significantly influenced by the transparency of these systems. Often, there is a lack of clarity about how the systems operate, how data is used, and how violations are processed. Moreover, there is ongoing debate about the effectiveness of traffic enforcement cameras in reducing violations and improving safety versus their use as a profit generating tool for municipalities. This debate plays a key role in shaping public opinion about the utility and fairness of these systems.

III. UNEQUAL JUSTICE: HOW TRAFFIC CAMERAS DISCRIMINATE AND EXPLOIT MARGINALIZED COMMUNITIES

These societal concerns highlight the complex interplay between technology, law, ethics, and social norms. They suggest the importance of careful consideration and balanced approaches in the implementation of traffic enforcement camera systems.

A. The Issue of Bias in Automated Systems

The potential for bias in the deployment and operation of these systems is a critical and ethical concern. There is a risk that the systems could be used to disproportionately target specific neighborhoods or

162. See Wykstra, supra note 160; Gipson Rankin, supra note 157, at 229 & n.20 (citing Cahoo v. SAS Analytics Inc., 912 F.3d 887, 894 (6th Cir. 2019) (“[T]he Agency never answered over 90% of the calls to its ‘Help Line.’”)).

demographics. These systems are built on biased data sets, leading to predatory ticketing practices that disproportionately burden people of color.

1. IDENTIFYING AND MITIGATING BIAS IN AUTOMATED ENFORCEMENT

This Essay proposes a comprehensive framework for addressing biases in AI. Bias in AI should be detected in all of its manifestations by unpacking biases encoded in datasets, predictions, and social outcomes that may be unintended consequences of AI. Harm should be mitigated by auditing for transparency, explainability, accuracy, and dependability in AI. And remedies should be implemented at every stage in AI development: data collection, training, operation, application, and evaluation.

Municipalities have turned to automated systems with a hope of mitigating bias. It is often assumed that algorithms are neutral parties, and that there will be no racial, gender, or other discriminatory bias in automated systems. However, some tech scholars suggest that bias is pervasive in algorithms. Because facial recognition algorithms are not...

165. For more on transparency and explainability, see generally Santa Fe Institute, Cris Moore on Algorithmic Justice & the Physics of Inference, YOUTUBE (Dec. 31, 2021), https://www.youtube.com/watch?v=jnNSWJSYXRo (discussing the importance of transparency in “the way we ask computers questions”) and Nagadivya Balasubramaniam, Marjo Kauppinen, Antti Rannisto, Kari Hiekkaniemi & Sari Kujala, Transparency and Explainability of AI Systems: From Ethical Guidelines to Requirements, INFO. & SOFTWARE TECH., Mar. 8, 2023, at 1 (discussing transparency and explainability “as important quality requirements of AI systems”). For more on accuracy, see Gipson Rankin, supra note 164, at 675–77 (discussing untrustworthy data).

167. See generally JOY BUOLAMWINI, UNMASKING AI: MY MISSION TO PROTECT WHAT IS HUMAN IN A WORLD OF MACHINES (2023); AYANNA HOWARD, SEX, RACE, AND ROBOTS: HOW TO BE HUMAN IN THE AGE OF AI (2020) (audiobook); Cade Metz, Who Is
yet widely deployed, there is a window of opportunity to proactively ban automated facial recognition in traffic cameras until and unless the specific software has been specifically audited to ensure both a general level of accuracy (i.e., greater than ninety-eight percent as was required in a California bill168) and a lack of racial and gender bias in the particular task it would be used for (i.e., that errors in matching images to known faces is within one percent across racial and gender groups). It will be important that this is tested in the particular conditions in which the images are generated and compared. Images from speed cameras and red light cameras may be more blurry, poorly lit, ill-posed, or obscured than other images.169 Additionally, the audit should consider the database that comparison photos are pulled from.170 Though auditing for racial and gender biases can enhance accuracy for specific tasks and populations, it is not a panacea, as improvements are not universally transferable across different software or classification tasks.171

Databases from police records may introduce different biases than from driver’s licenses databases because some racial and socioeconomic groups may be overrepresented in arrest records, for example.

Thus, while facial recognition algorithms are not currently widely used, many of the precursors to deployment of such systems are already in place, particularly in states like California that require a photo of the driver’s face before issuing a traffic violation.172 Given the propensity of

169. Poor or inconsistent lighting can hinder the technology’s ability to accurately detect facial features, which often disproportionately affects people with darker skin. Jake Laperruque, Key Facts About Face Recognition for Policymaking, PROJECT ON GOV’T OVERSIGHT (Aug. 24, 2021), https://www.pogo.org/analysis/key-facts-about-face-recognition-for-policymaking ("According to a National Institute of Standards and Technology study, some systems are 100 times more likely to misidentify people of East Asian and African descent than white people.").

170. If these databases contain a disproportionate number of images of people from certain racial or ethnic groups, it can lead to unequal performance and accuracy across different demographics. Cf. id. ("Face recognition mismatches can form the basis of individuals becoming investigative targets and a variety of disruptive and potentially traumatic police actions, such as being stopped, searched, regularly monitored, or detained and questioned. These harms will be disproportionately borne by people of color").

171. See id.

172. Compare CAL. VEH. CODE § 22425(b)(4) ("The use of facial recognition technology in conjunction with a speed safety program shall be prohibited."), with Red Light Camera Citation, supra note 55 ("The citation will state when are where the
speed cameras to be used in stategraft, it is important to limit the known racial biases in facial recognition algorithms before such systems can contribute to financially harming people with darker complexions.

2. THE MISCONCEPTIONS OF FAIRNESS IN AUTOMATED ENFORCEMENT SYSTEMS

It is crucial to recognize that the primary goal of automated traffic enforcement is not fairness, but safety and addressing budgetary shortfalls. Who has the power, privilege, and position to define safety? This power typically lies with municipalities and corporations that deploy smart automated enforcement systems. These systems, focusing on speeding and red light enforcement, employ technology to monitor behavior and collect data, including facial and license plate recognition. For instance, the U.S. Department of Transportation and companies like Redflex cite high urban traffic as a safety concern. Yet, this approach often leads to a disproportionate focus on areas in which there is often a higher concentration of racial minorities in which facial recognition software is either not designed or trained to “see” them or is biased against them.

The concept of fairness in this context is complex, as it involves balancing competing needs, rights, protections, benefits, and harms. There is no such thing as mathematical fairness. Citizens and governments must choose what is more fair or less fair by making judgments about the relative importance of many competing factors (e.g., safer streets in different neighborhoods, fines that differentially impact different populations, and preventing violent encounters with police during traffic stops that differentially impact different demographics).

violation occurred. It will include a photo of the vehicle in the intersection, a close-up of the driver, and the vehicle’s license plate.”).

174. See Alexandra Chouldechova, Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments 2 (Feb. 28, 2017) (unpublished manuscript) (on file with Cornell University), https://arxiv.org/pdf/1703.00056.pdf [https://perma.cc/VDD7-HJW7] (“It is important to bear in mind that fairness itself—along with the notion of disparate impact—is a social and ethical concept, not a statistical one. A risk prediction instrument that is fair with respect to particular fairness criteria may nevertheless result in disparate impact depending on how and where it is used.”).
The assessment of fairness should go beyond bias in facial recognition. Factors may include red light cameras on lights with shorter yellow light times, poor road conditions, or other inadequate safety features in poor and Black neighborhoods. Could requirements be put on red light and speed cameras that incentivize cities to provide equitable access to road safety features? Technology is not the only method that can improve traffic safety, but it can either address systemic inequities or it can exacerbate them. Surveillance technology that has the potential to dramatically increase government power over its citizens should be used with particular prudence.

3. ETHICAL CONSIDERATIONS: THE DANGERS OF PERFECT SURVEILLANCE

Even if government surveillance could perfectly identify only wrongdoers, excessive surveillance would still remain a concern. Excessive surveillance is an overreach of government and corporate power in our lives.

Perfect identification can avoid some problems while still creating others. For example, on one hand, perfect identification allows automated traffic enforcement to precisely identify repeat offenders who endanger public safety. On the other, it enables targeting individuals and groups of people in surveillance used for state repression and targeted violence from law enforcement. Discrimination and state sanctioned racial violence could be conducted with greater efficiency.

The extensive use of traffic cameras can lead to concerns about the emergence of a surveillance state, where the movements of citizens are constantly under watch. This situation might raise public fears about privacy. Additionally, there are serious concerns regarding data privacy, specifically how the data captured by these cameras is stored, utilized, and potentially disseminated to third parties. Potential for misuse is...

high. If this data were leaked, it would be easy to imagine the extortion value of a timestamped and geostamped picture of a driver or pedestrian, including an image of who that person might be with. The lack of clarity and control over this data heightens privacy fears.

Professor Randy Dryer’s and Shane Stroud’s 2015 scholarship outlines several legislative ideas to improve license plate reader systems, particularly in light of potential privacy violations from geolocation tracking. The use of cameras in traffic enforcement raises significant privacy issues. The perception of these cameras as tools for surveillance and tracking is a major concern, particularly regarding the tracking of individuals without their consent. Concerns also extend to how the captured data (e.g., images and videos) are stored and accessed, with fears about the potential misuse of this data for purposes beyond traffic enforcement.

The most important rights in the age of AI are the right to privacy for individuals and the right to transparency when AI is used in algorithms that make consequential decisions that impact lives and liberty. The United States government has not yet passed law regulating AI but—determined to balance innovation and regulation, safety, and liberty—has opened the conversation on the regulation of AI. Executive Order 14110 on “Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence” was released by the White House, which sets up a government-wide initiative to oversee responsible AI development and deployment across federal agencies.

records were compromised in a cyberattack targeting a vendor for Louisiana’s Office of Motor Vehicles); Noelle Crombie, Massive Hack of Oregon DMV System Puts Estimated 3.5 Million Driver License and ID Card Info at Risk, Officials Say, OREGONLIVE, https://www.oregonlive.com/commuting/2023/06/massive-hack-of-oregon-dmv-system-puts-estimated-3-5-million-driver-license-and-id-card-info-at-risk-officials-say.html [https://perma.cc/6LT7-J54S] (June 20, 2023, 10:46 AM) (noting over 3.5 million residents of Oregon were affected by hacking); Jonathan Greig, West Virginia City Latest Municipality Hit with Cyberattack, RECORD (Jan. 5, 2024), https://therecord.media/west-virginia-city-hit-cyberattack [https://perma.cc/X6W4-W9J5] (indicating Beckley, West Virginia, was targeted with a ransomware attack).

served as the principal deputy director for science and society of the White House Office of Science and Technology Policy, pointed out that the data that enables AI systems is a global economic and political force and it will require governments to properly regulate automated systems.178 The Algorithmic Justice League advocates for equitable AI access and accountability for any harm, emphasizing transparency in AI decisionmaking inputs and roles, and stressing the importance of established appeal mechanisms when AI tools are used in decision-making processes.179

B. Addressing Racial Disparities

1. Technology and Its Role in Exacerbating Racial Injustice

As jurisdictions debate adding facial recognition technology to automated traffic enforcement, it will exacerbate harms against Black communities. Data bias, omissions, and limitations can also lead to discrimination based on race. Data bias can lead to the lack of inclusion or recognition of certain groups in the data. This problem is central with facial recognition software that does not recognize darker skin. The Algorithmic Justice League argues such technological discrimination can lead to not registering the presence of people with darker skin, such as self-driving cars that may hit someone they cannot see, or automated exam software may mark someone absent because it does not “see” that person.180

A key problem with AI and other algorithms is that they reify biases from the past, encode them in technology that provides a false veneer of objectivity, and then project those biases into the future. This diminishes all of humanity’s ability to imagine a more equitable, bountiful, safe, and prosperous future, but it is particularly harmful to minority populations whose voices and perspectives are drowned out in the vast datasets that fuel AI.

This has to be answered in the context of facial recognition in the legal system. Traffic violations are the most common ways that people

encounter law enforcement, and these encounters are particularly deadly for Black people. The combination of biased facial recognition and a racist criminal legal system has already resulted in a unique and devastating form of harm to the Black community. Every reported false arrest based on misidentification from facial recognition software has been a false arrest of a Black person, almost all of them men.

Thus far, there are no clear legal cases documenting that facial recognition was used to issue traffic citations. However, the harm is not just in issuing citations; it is also in the state keeping a record of faces at all. This phenomenon is particularly evident in facial recognition software. But the biggest harm is not invisibility, it is how the power of the surveillance state, amplified by AI, impacts Black people’s health, well-being, and safety. Is the capture of an image itself statecraft or stategraft? The potential harm from that image being captured is different for historically marginalized populations.

Some have argued that automated methods will be less biased than police for identifying traffic violations. This may or may not be the case. It will depend on where cameras are placed and who decides where they are placed. The presumed reduction of police violence depends on what happens after automated systems record images and suspected violations. It could reduce police violence against Black motorists on the street and increase violent police arrests in people’s homes, traumatizing whole families and neighborhoods. The false veneer of objectivity could shift the violence in a way that makes it harder to document and correct.

2. PROPOSALS FOR REFORM AND EQUITY IN TRAFFIC ENFORCEMENT

Addressing the challenges of automated traffic enforcement involves three key steps. First, it is crucial to verify that images captured by automated cameras are processed and used in a manner free from bias,
prohibiting their use until this is established. Second, testing the fairness of these systems in their specific operational context is essential. Third, implementing stringent privacy safeguards ensures that cameras meant for public safety do not inadvertently contribute to invasive surveillance.

Reports by Streetsblog Chicago highlight initiatives like adjusting camera locations near freeways, scaling fines based on financial capability, and reevaluating ineffective camera sites. Incorporating assessments of racial and economic impacts of camera enforcement into the review process can provide valuable insights.

In Oakland, the automated enforcement pilot centers on equity and privacy. This includes options for lenient fines or community service, and restricts photo enforcement to rear license plates, banning facial recognition. The policy minimizes police-community interactions at traffic stops, potentially reducing conflict. With substantial community input, the policy includes a “Use Policy & Equity Analysis” for strategic site selection. Privacy is prioritized by limiting footage retention and restricting external access or use of the data, emphasizing a commitment to privacy and targeted enforcement.

IV. ALTERNATIVES TO INCREASED TECHNOLOGICAL SURVEILLANCE

Systemic racism comes in many shapes and policies, and one of them is urban design. Pedestrians may blame speedy drivers and drivers may blame jaywalking pedestrians, but the real culprit is the lack of pedestrian infrastructure.

185. See Predominantly Black Neighborhoods in D.C. Bear the Brunt of Automated Traffic Enforcement, supra note 75.

187. Id.

188. Id.

189. Id. (providing that “[f]ootage may only be retained for 5 days if no violation is issued, 60 days if a violation is issued” and “[f]ootage must be collected by the Department of Transportation and may not be shared or used for any other purpose”).

191. See id.
is being done to improve lighting and road infrastructure in these high conflict spaces? Tech can serve as an excuse or band-aid that does not fix deep systemic problems.

A. Improving Traffic Enforcement without Escalating Surveillance

To effectively enhance road safety, a holistic approach is essential. This encompasses extending yellow and red light phases, which is proven to reduce accidents, and restricting vehicle access in congested areas to improve safety. Key pedestrian infrastructure improvements include raised crosswalks, synchronized signals, and strategically placed crosswalks. Additionally, expanding public transportation, such as adding bus services and building light rail, is vital.

Urban design changes, such as dedicated bus and buffered bicycle lanes, along with narrowing roadways, make traffic environments safer and more efficient. Reducing multi-lane intersections also lessens potential hazards.

To improve traffic enforcement while addressing concerns about increased surveillance, it is crucial to understand community opposition often arises from perceptions of automated systems as revenue-focused. The U.S. Department of Transportation’s operational guidelines for speed cameras are pivotal in this context. These guidelines clarify that

194. See sources cited supra note 193.

195. See VENSON, GRIMMINGER & KENNY, supra note 193, at 20–21.

196. See id. at 30. See also Vasquez, supra note 19 (noting that multi-lane roadways increase danger for crossing pedestrians).

speed cameras should supplement, not replace, traditional enforcement, thereby balancing technological enforcement with traditional methods.198 Importantly, these guidelines also tackle constitutional challenges arising out of the Fifth and Fourteenth Amendments, such as due process and equal protection.199 Addressing these legal aspects ensures that automated enforcement respects individual rights and adheres to legal standards, thus maintaining a balance between effective enforcement and safeguarding civil liberties.200 This approach necessitates legislative action for the implementation of certain camera systems201 to further ensure that traffic enforcement technology is used responsibly and ethically.

\textbf{B. Balancing Safety, Equity, and Privacy}

In the realm of traffic enforcement, balancing safety, equity, and privacy necessitates a legal framework that minimizes stategraft while addressing systemic issues. This approach is exemplified by the Biden Administration and Congress, which built upon the Obama Administration’s efforts to rectify past injustices in transportation investments. The Reconnecting Communities pilot, part of the Bipartisan Infrastructure Law, is a significant step in this direction, allocating up to $1 billion through 2026 for communities affected by inequitable transportation policies.202 Moreover, D.C.’s creation of the Automated Traffic Enforcement Task Force to review and propose improvements to its program, including aspects related to fines, late payment penalties, and moving violation laws, demonstrates a commitment to reevaluating enforcement strategies.203 Such initiatives are crucial to shift away from a model that potentially requires mass surveillance and instead towards a comprehensive speed management program that emphasizes equitable road safety.204 These initiatives do not require government mass

198 Id. at 1.
199 Id. at 5.
200 See id.
201 See id. at 5–6.
202 Jenkins, supra note 18. These funds will support planning, capital construction, and technical assistance to state and local governments to address past harms. Id.
204 See id.
surveillance of the people.\footnote{205} They should all be a component of a comprehensive speed management program.\footnote{206}

Stategraft through automated enforcement threatens to compromise democracy. It changes the relationship between the state and its citizenry.\footnote{207} Through automated traffic enforcement, the state exploits and imposes mass surveillance on its citizens—particularly the most vulnerable—to increase its coffers. The primary goal of a democratic state is to protect itself, its territory, and its population, which is reflected in the trust placed in political institutions to keep us safe. Yet, automated enforcement is frequently seen as a tool for generating revenue rather than as means to enhance road safety. This perspective stems from a belief that these cameras primarily target “bad” drivers who run red lights, rather than contributing to the safety of all road users through improved infrastructure.\footnote{208} This perception can undermine public trust in these systems. Moreover, a lack of transparency and effective communication regarding the use and objectives of traffic cameras contributes to public skepticism and mistrust.

CONCLUSION

Automated enforcement can become automated stategraft. While automated traffic enforcement has potential to increase safety, it also

\footnote{206}{See generally Nat’l Highway Traffic Safety Admin., supra note 197 (suggesting guidelines on automated traffic enforcement systems).}

\footnote{207}{See Atuahene, supra note 8, at 27.}

raises profound ethical, legal, and social concerns. Far from being passive observers, automated systems impose disproportionate financial and psychological burdens on Black communities, undermining already low trust in law enforcement and exacerbating economic disparities. Increased surveillance coupled with facial recognition technology and other automated responses shifts the burden of proof to those accused of violating traffic laws, and bias in how such systems are trained and deployed will burden some populations more than others. Even when intended to improve safety, these technologies may not address the root causes of traffic safety issues unless they are deployed along with other safety enhancements, many of which cost money rather than increase revenue. Automated traffic enforcement mechanisms are seen as profit generators that worsen the burden on already socioeconomically challenged communities rather than increasing their safety. A critical reevaluation of automated traffic enforcement is essential to address systemic injustices and drive transformative change. Cities and municipalities have an opportunity to increase community trust by deploying effective traffic management that uses technology to effectively balance safety, fairness, and community welfare. To do so, they must prioritize equity, evaluate and mitigate bias, protect privacy, and involve local communities in decisionmaking.